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Overview

What is Self-Supervised Learning?
An analogy




How do Infants Learn? can Machine do the same?

Then their parents
. teach them.




How do Infants Learn? Yes! Self-Supervised Learning
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Self-Supervised Learning for Speech

paired labeled data .
X (human speech) < » y (text transcript)

W 7 [ASR system} : "Tell me the weather"
~—

A) Supervised Learning (Al assistants like Xiao-Buy, Siri, and Alexa)

__________________________________________________ j



https://www.asus.com/tw/ASUS-Smart-Speaker/ASUS-Smart-Speaker-Xiao-Bu/
https://www.apple.com/tw/siri/
https://en.wikipedia.org/wiki/Amazon_Alexa

Self-Supervised Learning for Speech

paired labeled data

X (human speech) < » Yy (text transcript)
> [ASR system} "Tell me the weather"
A) Supervised Learning (Al assistants like Xiao-Buy, Siri, and Alexa)

€« -
x' (lots of human speech) J
| :{> Pre-trained leverage the knowledge
| Model of unlabeled data

X (human speech) @ y (text transcript)

Pre-trained models

are evaluated on

: LASR system] > | "Tell me the weather"

downstream tasks.

B) Self-Supervised Learning for Improving Supervised Systems


https://www.asus.com/tw/ASUS-Smart-Speaker/ASUS-Smart-Speaker-Xiao-Bu/
https://www.apple.com/tw/siri/
https://en.wikipedia.org/wiki/Amazon_Alexa

Examples

and BERT



An example: Voice Conversion

Given a source speech (User: | am your father),
and target speaker’s identity (Darth Vader), §&

the converted speech should sound like B utterlng A’s content.

User

“I am your father.”

LI

“| am your father.” Darth Vader




An example: Voice Conversion

Needs a lot of parallel data for supervised training: ({4, 8
What about self-supervised learning?

User

“I am your father.”

LI

“| am your father.” Darth Vader




Voice Conversion (1/ 3) = Discrete linguistic units discovery

MAE Loss
a) K gradient 7Y

- G - () M

X 1] aly X(x, y)
Training @ ‘ M“V SRREKErY J 6 Reconstructed

Speech
ASR-Encoder is trained to discover TTS-Decoder is trained to project
a set of common linguistic units the discovered units back to the
given a variety of speakers designated speech

In this self-supervised end-to-end manner, discrete linguistic units are learned
and represented as multilabel binary vectors (MBVs).




Voice Conversion (2/ 3) = MBV: vectors of zeros one ones
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Voice Conversion (3/ 3) = VCusing the ASR-TTS autoencoder

) K gradient MAE‘Loss
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Converted

Inference @ ‘ Speech

The voice converted speech would sound like §

::" utterlng scontent@




Voice Conversion - Why does it work?

---------------

[ Speaker A ]

> [ ASR Encoder J >

[ Content ]

[ Speaker A ]

Input Ve
Speech |:> [ ASR Encoder JI::> 5 Speech

[ Content ]

> [ ASR Encoder J >

[ Speaker A ]

[ Content ]




Voice Conversion - Why does it work?

---------------

Capacity Too Big

[ Speaker A ]

[ Content ]

o> (R J@n@[ }@

Capacity Too Small

[ Speaker A ]

Slggeug:h |::> [ ASR Encoder JI::> D |::>[ TTS Decoder }I::> sp\égch
[ Content ]
i

Capacity Just right

= [ ASR Encoder J > H ﬁ>[ TTS Decoder }Q
=-_—

[ Speaker A ]

[ Content




Voice Conversion - Why does it work?

[ Content ]

Slggeugh |::> [ ASR Encoder JI::> D |::>[ TTS Decoder }I::>

[ Content ]

> [ ASR Encoder J > H ﬁ>[ TTS Decoder }ﬁ>
—

[ Content ]

Capacity Too Big
[ Speaker A ]
|::>[ ASR Encoder JI::> |::>[ TTS Decoder }I::> \

Speaker A

Speaker B

Content

Capacity Too Small ,
[ Speaker A ]

Speaker B

Content

Noise

Speaker ID

Capacity Just right
[ Speaker A ]

Content

VC

| Speech



Voice Conversion:
ZeroSpeech 2019 i

MBV

_;o_soo_s]

https://zerospeech.com/2019/results.html

e Global Competition

e How good are the learned vector?


https://zerospeech.com/2019/results.html

Voice Conversion:
ZeroSpeech 2019

https://zerospeech.com/2019/results.html

e Global Competition

e How good are the learned vector?

e We achieved 2nd place in terms of
learned vectors, while achieving

better VC quality than the 1st place.

e Published in InterSpeech 2019 as
first author (oral presentation).

-.LO—LOO_.L]

MBV

Surprise language

# Authors
MOS CER Similarity ABX  Bitrate *

o 17 Gok et al. 1.46 0.86 | 3.03 27.26 29.46
O 21 Topline 3.92 0.28 3.95 16.09 35.2

O 6 Liu et al. 1.69 0.81 | 1.97 44.25 43.95
O 18 Liu et al. 1.2¢ 0.86 1.96 43.42 43.95
0 9 Kumar et al. 1.44 0.89 3.02 45.64 44.07
© 10 Kumar et al. 1.82 0.86 33 40.17 46.07
0 12 Kamper et al. 1.94 0.58 1.95 26.49 69.22
© 15 Rallabandietal. | 1.89 0.71 3.02 28.41 71.42
o 1 Baseline 2.07 0.62 3.41 27.46 74.55
o 3 Pandia et al. 2.02 0.48 3.21 20.77 94.15
0 2 Pandia et al. 2.53 0.43 3.58 2356 11543
O 16 Yusuf et al. 1.84 0.8 2.84 2416  121.03
0 7 Kamper et al. 1.96 0.6 1.76 19.76 139.54
o 13 Cho et al. 1.23 0.85 1.28 12.05 143.76
O 14 Cho et al. 1.63 0.78 1.33 10.39  144.63
© 19 Tjandraetal. 3.25 0.35 2.67 17.8 151.77
© 5 Feng et al. 1.67 0.66 26 16.87  299.21
© 20 Tjandraetal. 32 0.21 23 13.98  362.99
o 1 Feng et al. 1.28 0.74 2.01 10.64  470.23
© 4 Horizon Robotics | 2.89 0.36 1.43 2492 84246
© 8 Horizon Robotics | 3.55 0.32 1.34 2492  842.46



https://zerospeech.com/2019/results.html

Recall: Self-Supervised Learning for Speech

paired labeled data .
X (human speech) < » _ Y (text transcript) __ -

¢
W = ‘:[ASR SYstem} > |"Tell me the weather" :
\ J

x' (lots of human speech)

(——= == \}
:{>| Pre-trained |l leverage the knowledge
| Model | of unlabeled data

= /
X (human speech) @ y (text transcript)
(- N
W > :[ASR system} " |"Tell me the weather" :
N e = = — = = = = = e e = = = /

B) Self-Supervised Learning for Improving Supervised Systems



Self-Supervised Learning: VC

paired labeled data
X (speaker A) < > y (speaker B)

A) Supervised Learning

=N | leverage the knowledge
M ” e ' “N w vV WG iee el l of unlabeled data

|
X (speaker A) y (speaker B)

M“" " h ,,, VG Model M .‘ ““M

B) Self-Supervised Learning for Improving Supervised Systems




https://rajpurkar.github.io/SQuAD-explorer/

An example:
Machine QA

SQUAD2.0

The Stanford Question Answering Dataset

Machine reading comprehension (MRC) is an Al challenge
that requires machine to determine the correct answers to
questions based on a given passage.

Leaderboard

SQUADZ2.0 tests the ability of a system to not only answer reading comprehension
questions, but also abstain when presented with a question that cannot be answered
based on the provided paragraph.

Rank Model EM F1

Human Performance 86.831 89.452
Stanford University
(Rajpurkar & Jia et al. '18)

1 SA-Net on Albert (ensemble) 90.724 93.011
QIANXIN
2 Retro-Reader (ensemble) 90.578 92.978
Shanghai Jiao Tong University
http://arxiv.org/abs/2001.09694
3 ALBERT + DAAF + Verifier (ensemble) 90.386 92.777
PINGAN Omni-Sinitic
4 Retro-Reader on ALBERT (ensemble) 90.115 92.580
Shanghai Jiao Tong University
http://arxiv.org/abs/2001.09694
5 ALBERT + DAAF + Verifier (ensemble) 90.002 92.425
PINGAN Omni-Sinitic
6 ALBERT (ensemble model) 89.731 92.215
Google Research & TTIC

https://arxiv.org/abs/1909.11942

6 Albert_Verifier_AA_Net (ensemble) 89.743 92.180

QUANXIN


https://rajpurkar.github.io/SQuAD-explorer/

Leaderboard
https://rajpurkar.github.io/SQuAD-explorer/

SQUADZ2.0 tests the ability of a system to not only answer reading comprehension
questions, but also abstain when presented with a question that cannot be answered

An exa m p le : based on the provided paragraph.

Rank Model EM F1

[ J
M a C h I n e OA Human Performance 86.831 89.452
Stanford Universit

(Rajpurkar & Jia et al. '18)

4 SA-Net on Albert ‘ensemble) 90.724 93.011
%
2 Retro-Reader (ensemble) 90.578 92.978
Shanghai Jiao Tong University
® http://arxiv.org/abs/2001.09694
The Stanford Question Answering Dataset & * Saan Hire S
PINGAN Omni-Sinitic

4 Retro-Reader orf ALBERT (ensemble) 90.115 92.580
Shanghai Jiao Tong University
http://arxiv.org/abs/2001.09694

Machine reading comprehension (MRC) is an Al challenge
that requires machine to determine the correct answers to
questions based on a given passage.

5 m DAAF + Verifier (ensemble) 90.002 92.425
Humans are outperformed by machine! PINGAN Omni-Sinitic
6 | ALBERT (ensemble model) 89.731 92.215
Google Research & TTIC

L B E RT B E RT https:/arxiv.org/abs/1909.11942
l \ 6 erifier AA_Net (ensemble) 89.743  92.180

QUANXIN


https://rajpurkar.github.io/SQuAD-explorer/

BERT (Bidirectional Encoder Representations from Transformers)

e Achieved 11 SOTA when published.
e Atechnique for NLP pre-training developed by Google.




BERT (Bidirectional Encoder Representations from Transformers)

e Achieved 11 SOTA when published.

e Atechnique for NLP pre-training developed by Google. vocabulary size Predicting the
e Learn contextualized repr trough Masked LM: ( A y masked word

[M] = you

How are [M] today ?



BERT (Bidirectional Encoder Representations from Transformers)

e Achieved 11 SOTA when published.

e Atechnique for NLP pre-training developed by Google. vocabulary size

e |Learn contextualized repr trough Masked

Predicting the
LM: ( A y masked word

[M] = you
£ 2 " > Add&Nom
o l
3 § Feed F
E 5 Forward dim
= A
L
*Enum 5 Add & Norm |
|
[ Multi-Head ]( A
Share layers of BERT: Attention num
A Lite BERT = ALBERT Q A }

k_

/ How are [M] today ?




Recall: Self-Supervised Learning for Speech

paired labeled data

( _X (human speech) _€—— » __y (text transcript) __
\
| =) [ASR system} — > |"Tell me the weather" |
' ' |
I— —————————————————————————— w’
A) Supervised Learning
______________ =)
Pre-trained |, leverage the knowledge
j of unlabeled data
y (text transcript)
____________________ \
"Tell me the weather" |/
I
—————————————————————————— -’

B) Self-Supervised Learning for Improving Supervised Systems



Self-Supervised Learning: BERT

P (passage) < paired labeled data

Q (question) A (answer)
== "Covid-19 outbreaks
== GaMode in year 2020"

A) Supervised Learning

x' (lots of raw text)

N
leverage the knowledge
@ :‘> E BIEIRET J of unlabeled data

P (passage) @

Q (question) A (answer)
== "Covid-19 outbreaks
== Shioet) in year 2020"

B) Self-Supervised Learning for Improving Supervised Systems



Mocklngjay

m BERT to Speec



From BERT to Speech BERT

NLP BERT:
Language Representation Learning

!presentations!

Unsupervised
pre-train on

~—Text tokens
text




From BERT to Speech BERT

NLP BERT:
Language Representation Learnin

Usage:
Extracts features for

downstream NLP models
(can also be fine-tuned)

! ! !presentations!

—_—l
—_—l
’—/\
=R =

Unsupervised
pre-train on
text

~—Text tokens




From BERT to Speech BERT

NLP BERT: Speech BERT:
Language Representation Learnin Speech Representation Learning
Usage: Usage:
Extracts features for Extracts features for
downstream NLP models downstream SLP models
(can also be fine-tuned) (can also be fine-tuned)

! ! !presentations!

-
Unsupervised
pre-train on

Acoustic Frames speech

J88d

—_—J ]
—_—— o —
— ——
=R =

Unsupervised
pre-train on
text

—




Recall: Self-Supervised Learning for Speech

paired labeled data .
X (human speech) < » _ Y (text transcript) __ -

¢
W = ‘:[ASR SYstem} > |"Tell me the weather" :
\ J

x' (lots of human speech)

(——= == \}
:{>| Pre-trained |l leverage the knowledge
| Model | of unlabeled data

= /
X (human speech) @ y (text transcript)
(- N
W > :[ASR system} " |"Tell me the weather" :
N e = = — = = = = = e e = = = /

B) Self-Supervised Learning for Improving Supervised Systems



Self-Supervised Learning: Mockingjay

paired labeled data
x (human speech) < » y (phone / speaker)

Phone / Speaker
Classifier

Class X

A) Supervised Learning

x' (lots of human speech)

A leverage the knowledge
* “ W o b H N m '::> [ ey } of unlabeled data

X (human speech) @ y (phone / speaker)
Phone / Sp_eaker Class X
Classifier

B) Self-Supervised Learning for Improving Supervised Systems



Pre-Training Task: Masked Acoustic Model
E| B B Real (Phoneme level,
Frames Spectrogram)
[ Masking Probabilistic Policy ]

H M H E| B H M H H Masked (Phoneme level,
Frames Spectrogram)




Pre-Training Task: Masked Acoustic Model

A & E| |F| |G| |H J K Real
Frames

Mockingjay
Representations

Transformer  (Bidirectional,
Encoders Self-Attention)

A

Al |B| |0| |D| |[E| |0| |0] [H]| [0] [J] |K Masked  (Phoneme level,
Frames Spectrogram)




Pre-Training Task: Masked Acoustlc Model

C
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ik
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J

L1 Loss on
Predicted
Frames

| Predlctlon |
Head

)

Mockingjay
Representations

Transformer
Encoders

A
Masked
Frames

(feed forward)

(Bidirectional,
Self-Attention)

(Phoneme level,
Spectrogram)



Pre- Trammg Task: Masked Acoustlc Model

Reconstructs
from corrupted
input

Considers the
whole utterance

4 L S SO &
P P |P P
H H |[H H
¥ 4 4 4 § F §¥ % § & %
a )

Mockingjay }g;

1] ] o o o /B

L1 Loss on
Predicted
Frames

(feed forward)

Head

)

Mockingjay
Representations

Transformer
Encoders

A
Masked
Frames

| Predlctlon |

(Bidirectional,
Self-Attention)

(Phoneme level,
Spectrogram)



Probabilistic Policy for Masking Frames

:
~BEEEE-
J

1) Select 15% of the frames for
prediction (highlighted in green).
J




Probabilistic Policy for Masking Frames

2) 80%
1)

(

prediction (highlighted in green).

[1) Select 15% of the frames for ]

‘2

) For all selected frames:

\0 leave untouch 10% of the time /

~

mask to zero 80% of the time

replace randomly 10% of the time

\ Mask all 15%

~N

J




Probabilistic Policy for Masking Frames

JBEEE-— BUEME
1) 0 0

Mask all 15%

prediction (highlighted in green).

/2) For all selected frames: \ \l ' ' . '

. Replace all 15%

"/o
[1) Select 15% of the frames for ]

e mask to zero 80% of the time

e replace randomly 10% of the time

\0 leave untouch 10% of the time /




Probabilistic Policy for Masking Frames

2)
@8 EE-

1) Select 15% of the frames for
prediction (highlighted in green).

‘2

\.

) For all selected frames:

~

mask to zero 80% of the time

replace randomly 10% of the time

leave untouch 10% of the time /

80% '

IBEE-

Mask all 15%

Replace all 15%

~ HEEEE-

kDo nothing, frames remain the sam

©)




Input Feature: Masked Spectrogram

140

120
« 100
Q

0 50 100 150 200
Frames

250

300



Input Feature: Masked Spectrogram

140

120
« 100
Q

Masked to Zero

80-dim mel-spectrogram

First derivative




Channels

= /) ) (] L1 Loss on
A G H [I| |[J| |K Predicted
Frames
4 4
=] P Prediction
H H Head
kY 4

)
;| D D D D D [ Mockingjay
Representations
Y LS Y LY [} I

>xTop =

Cc
S
P
H
+

Mockingj jay TrEar?fcfﬁ;T: r
]IB@EMIBI[ -3
Masked
Frames
100 35 ;- : : | Masked
zz : b * | ’ Frames
40 Visualizations

N
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Channels

I I ) /M M (] L1 Loss on
H c F| |G | Predicted
. e + Frames
H H|l |H H Head
+ £ S ¥ 1
D D [ Mockingjay
Representations
i Y S Y T 'Y |
Transf
Mockingj jay Encoders
Masked
Frames
Masked
Frames
Visualizations

100 200 300 400 500



Channels

L1 Loss on
A C H J| |K Predicted
Frames
P Prediction
H Head
Mocklngjay
Representatlons

Channels

- Transformer
The model was able to Repr MOCkngayy Encoders
reconstruct spectrogram form
hidden representations I H u H E u u I u I I Masked
Frames

Masked
Frames

Channels

Visualizations




Migrating from text to speech

Acoustic Features: long and locally smooth in nature,

need to 1) shorten the sequence and 2) mask over a longer span




Migrating from text to speech

Acoustic Features: long and locally smooth in nature,

need to 1) shorten the sequence and 2) mask over a longer span

Address the long and smooth problem with:
Downsampling, and consecutive masking R=3, C=3

m o 1T
- 0 - g
i - 10




] ) ] ] L1 Loss on
° C B H F| G | Predicted
Model Architecture JEEHH0L
B
+ + % Y
Mockingjay
Representations




Model Architecture

X
» I~ Transformer

I"Idim

Encoders

c
3

\.

~» Add & Norm
I

~» Add & Norm
I

Multi-Head |,
Attention num

Hidden

Feed - Fx
Forward dim

)

BASE (L=3)
LARGE (L=12)

C
S
P
H
4

JUL

gk

7y

F
LS
P
H
+

[ Y

—

G
A
P
H
£y

S

/Y

|
A
P
H
+

zY

y

.

Y
&

Mocklngjay ani"”

TR

H_dim =768
F dim = 3072

\. - i =
e Anum=12

e Train on LibriSpeech 360 hrs
e Pre-train steps = 500k
e Fine-tune steps = 50k (2-epochs)

L1 Loss on
Predicted
Frames

’f Prediction \‘
Head

)

Mockingjay
Representations

Transformer
Encoders

4
Masked
Frames

4




Incorporating with Downstream Tasks

1) Feature Extraction

Pre-train

() ] ) ) L1 Loss on
H | K Predicted
Frames
4
P Prediction
H Head
Y

Mockingjay
Representations

Transformer
Encoders
A

Masked
Frames




Incorporating with Downstream Tasks

1) Feature Extraction

Trained with little paired data

Pre-train

() ) () () L1 Loss on
A H J K Predicted
Frames

C F| |G 1
Frozen s e il +
P Pl [P P Prediction
H H H H Head
: * S S &

o Mockingjay
l Representations
|

\

Used for feature Encoders
extraction
Masked

Frames




Incorporating with Downstream Tasks
2) Weighted Sum from All Layers (WS)

Trained with little paired data




Incorporating with Downstream Tasks
2) Weighted Sum from All Layers (WS)

Trained with little paired data

Simi I r to
ELMo in NLP

=\

7
T



Incorporating with Downstream Tasks

3) Fine-tune (FT2)

Pre-train

|
A
P
H
X

L1 Loss on
Predicted
Frames

Prediction
Head

Mockingjay
Representations

Transformer
Encoders
A

Masked
Frames




Incorporating with Downstream Tasks
3) Fine-tune (FT2)

/

Fine-tune with little paired data

Pre-train

Not Frozen

() ] ) ) L1 Loss on
H H| |1 J| K Predicted
Frames
4
P Prediction
H Head
Y

Mockingjay
Representations

Transformer
Encoders
Masked
Frames

HTohp o




Experiments - 1/3

Acoustic Features

Phoneme Classification

Speaker Recognition

Sentiment Classification

Mel Features 49 1 70.1 64.6
BASE 60.9 94.5 67.4
LARGE 64.3 96.3 70.1

Consistent results over all three tasks:
Mel < BASE < LARGE




Acoustic Features

Experiments - 2/3

Phoneme Classification

Speaker Recognition

Sentiment Classification

Mel Features 491 70.1 64.6
BASE 60.9 94.5 67.4
LARGE 64.3 96.3 70.1
LARGE-WS 69.9 96.4 711

Consistent results over all three tasks:

LARGE < LARGE-WS




Low-Resource Experiments - 1/6

o O—
49.1 491 49.2

44.9 417

35.2 Mel-feature

8 Phone accuracy (test-clean, %) S

Amount of labeled data (train-clean-360, hr)
360 45 18 3.6 1.8 0.36

We demonstrate how pre-training on speech can improve supervised
training in low resource scenarios, we train with reduced amount of labels.



Low-Resource Experiments - 2/6

90
9
=
[9y)
[}
2
= ‘/57.7
O Gm—————gy O
2 O 54.8
— 609 599 59.9 ~
S
=)
8 49.1 49.1 49.2 45.1 BASE
S 44.9
5 41.7
= 35.2 Mel-feature
2
;E) Amount of labeled data (train-clean-360, hr)
360 45 18 3.6 1.8 0.36

Mel < BASE




Low-Resource Experiments - 3/6

8 Phone accuracy (test-clean, %) S

64.3

60.9

Amount of labeled data (train-clean-360, hr)

59.9 62.4 59.9 855

63.9 57.7

35.2 Mel-feature

360

45

18 3.6 1.8

Mel < BASE < LARGE

0.36



Low-Resource Experiments - 4/6

35.2 Mel-feature

Amount of labeled data (train-clean-360, hr)
360 45 18 3.6 1.8 0.36

8 Phone accuracy (test-clean, %) 8

LARGE < LARGE-WS
with an avg 5.75% improvement




Low-Resource Experiments - 4/6

NO52.8 LARGE-WS

V.U LAN

|\ = | =

45.1 BASE

35.2 Mel-feature

8 Phone accuracy (test-clean, %) S

Amount of labeled data (train-clean-360, hr)
45 18 3.6 1.8 0.36

w
D
o

With 0.1% of labels,
LARGE-WS (52.8%) outperformed Mel (49.1%) that uses all 100% hours of labeled data.




Low-Resource Experiments - 5/6

©s83.2+« BASE-FT500

57.9 BASE-FT2

35.2 Mel-feature

Amount of labeled data (train-clean-360, hr)

& Phone accuracy (test-clean, %) &8

360 45 18 3.6 1.8 0.36

All < BASE-FT2




Low-Resource Experiments - 6/6

?2 0s88.2« e BASE-FT500

X Va3 0= ~79.7

& n? 24

% ..' 8.4 ‘/66.5 68.7

% 843 ~63.9 o 62.0 57.7 59.7

s A . ) 5 : O, PPN 57-9 BASE-FT2
= 609 599 6274 509 s - ™ © “v TAR W
@ s B S ° S 4
g Om- 491 0 *«‘fﬂq 246.6 LARGE

gl =2 -1 49.2 . n - 9451 BASE

& 44.9 417

© ; o

c 35.2 Mel-feature
2

2(‘) Amount of labeled data (train-clean-360, hr)

360 45 18 3.6 1.8 0.36

With 0.1% of labels,
BASE-FT2 (57.9%) outperformed Mel (49.1%) that uses all 100% hours of labeled data.




| MAE Loss
a) I e Lo

__________________________________ i E:;ze,@ﬂ@ =)0l

X(x, y)

e SSL on VC (interspeech 2019, first author Oral) /@) & VBV S nne
e SSL on Mockingjay (ICASSP 2020, first aut.h__q(.Oral) 1 % o % % : ;P J {2%
Submitting to InterSpeech 2020 (5/15) 00[ 110001 e
1. Mockingjay for Adversarial Defence (2nd Author) [;E E E SE"AEziE E fEJ E»Fn:;r:

2. How Does Self-Supervised Models learn? (2nd Author)
3. Improving Mockingjay: Speech ALBERT (Advising)

4. Robust Neural Vocoding for Speech Generation (3rd Author)
Train WaveNet, WaveRNN, FFTNet, Parallel WaveGAN alternately on five different datasets.



Current Works

What else can we do with Mockingjay?

1. Adversarial Defense

Employ Mockingjay to protect models against adversarial attacks




1.Adversarial Defense What is Adversarial Attack?

+.007 x

((panda”

57.7% confidence 99.3% confidence

Hacking Al security systems: Face ID / Voice ID




1.Adversarial Defense What is Adversarial Attack?
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Hacking Al security systems: Face ID / Voice ID




1.Adversarial Defense What is Adversarial Attack?
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Hacking Al security systems: Face ID / Voice ID




1.Adversarial Defense What is Adversarial Attack?

)6 .

o
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Adversarial noise lmm

Adversarial example m —
X

Anti-Spoofing Model —»| Speaker Verification Model




1.Adversarial Defense How to Attack?

T
— f(x)
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Adversarial noise lm

Adversarial example m —_—
X




1.Adversarial Defense How to Attack?

T
— f(x)

— f(x) [Nonspooing——

£ & e

8

. _ +
Adversarial noise ‘WMM

Adversarial example IS

Dif f(f(x), f(Z))




1. Adversarial Defense Employing Mockingjay

—>f(x)=

x o —_—
06 oo —
Adversarial noise ‘m:-«?m
Adversarial example MMM — — (%) Spoofing ﬁ
¥




1. Adversarial Defense - Experiments

A) ATTACKING LCNN WITH PGD B) ATTACKING LCNN WITH FGSM
—d—Mock —#-rand —&—mel —¢-medium —¥—=mean —@—guassian —ll=scratch —a—Mock =4=rand =¥-mel ~®—-medium ——mean ——guassian —ll=scratch

100 100

80 80

> 60 5 60
< <
o o

3 40 3 40
Q Q
< <

20 20

0 0

0 0.1 1 2 4 8 16 0 0:1 1 2 4 8 16
ATTACK SIGNAL EPSILON ATTACK SIGNAL EPSILON
C) ATTACKING SENET WITH PGD D) ATTACKING SENET WITH FGSM
—4&—Mock =>rand —#=mel —#—medium ——mean ——guassian —li—~scratch —&—Mock =¢=rand =¥=mel ~#-medium ——mean —=—guassian —ll=scratch

100 100

80 80

§ 60 ™ E 60
o o

Q 40 3 40
< <

20 20

0 0

0 0.1 1 2 4 8 16 0 0.1 1 2 4 8 16

O ATTACK SIGNAL EPSILON ATTACK SIGNAL EPSILON



LNSR

1. Adversarial Defense - Experiments
o
+ 0

HIDDEN DIFFERENCES OVER ALL LAYERS

——PGD8 -—®-PGD16 —4—FGSM8 —<-FGSM16

—_—

=N

4
2 Intuition:
— LNSR- Measure the amount of
1 adversarial signal through the layers
9 10 11 12
0.5 N i — pn
LNSR; = —”h]| hnﬁ’ I
i 2
0.25 =l

HIDDEN LAYER




Current Works

What else can we do with Mockingjay?

2. Understanding Self-Supervised Models

Visualize and explainable understanding of how models draw conclusion




Recall: Model Architecture

Hdim Hidden

~» Add & Norm M) M M M) L1 Loss on
H H Predicted
[ Feed ]( F I Frames
T Tdim

C |
Forward & EX
P P Prediction
\% H H Head
£ +
Mockingjay
Representations

num - 3 Add & Norm ;| D D D
[ Multi-Head ]( A o - 7

Y
Attention
Transformer
t A } MOCklngJay *J Encoders

TR

Transformer
Encoders

HMITop =
bzop o

_>[
+[:J
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Attention of layers - 12 Heads Summary

Layer 0 Layer 5 Layer 11

Head 1

Head 10 Head 10 Head 11 Head 10




Attention of layers - 12 Heads Summary

Layer 0 Layer 5 Layer 11

Head 4
o w 2 W@

Head 10 Head 10 Head 11 Head 10




Attention of layers - What Each Layer Does?
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Attention of layers - What Each Layer Does?
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" Note that the input of
deeper layers are no
longer acoustic
features

Input Sequence
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Layer O - Vertical Layer 8 - Global Layer 11 - Diagonal
Observing the model dividing The model gathering global The model attends on past and
phoneme boundaries structures future context to predict output

These 3 actions are performed iteratively throughout the depth of the model




Diagonal - Observing Phoneme Boundaries

N >
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Diagonal - Observing Phoneme Boundaries

> >
O L2 oM AL SRRV 0 oL 3 o L L L RRRRRAD0A RS
0

diagonal attentions
are highly correlated
with phoneme
boundaries

& & 88

88 & &8

2R RBRBEHE

=
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Vertical

Vertical - Observing concentration

(e) () (2)

(d) not attends to identity (e) attends to sil (f) not attends to sil
(g) attends to ch, jh, s, sh (h) not attends to s, sh.

vertical attentions
often concentrate on
specific phonemes



Refine Attentions

Performance
Globalness Pruning

Category Evaluation

Span Pruning
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3.Speech ALBERT

Recall that: Mockingjay = Speech BERT

Speech ALBERT:
Share all the weights of each Transformer Layer!

Exps:

comparing with Mockingjay (uses less memory)

HEGBEREENOE

DDEUU" =DU

S eech ALBERT

THIHIHL

L1 Loss on
Predicted
Frames

Predrctlon
Head

Mockrngjay
Representatlons

Transformer
Encoders

Masked
Frames

X

r

Transformer
Encoders

num

I'Idim

Hidden

~» Add & Norm
I

Feed
Forward

R

~» Add & Norm
I

Multi-Head
[ : J""Anum

]‘"’Fdnn

Attention
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Related Works

What else besides Mockingjay?

A top-down introduction to all recent related works.



Contrastive Predictive Losses

FB
wav2vec

CPC Bidir CPC DeepMind

DeepMind
Modified CPC | FB

Reconstruction Losses

MIT Multi-Target APC | MIT
APC <

DeCoAR Amazon

Google Google Google

Autoencoder Audio2Vec Phase

Related Works



Contrastive Predictive Losses Re lated Works

FB

wav2avec

CPC Bidir CPC DeepMind

DeepMind
Modified CPC | FB




Contrastive Predictive Losses Re latEd Works
4 FB I

wav2vec
CPC Bidir CPC DeepMind
DeepMind — Intuition:
\ Modified CPC | FB j Pulls temporally nearby representations closer
and pushes temporally distant ones further.
Learned representations
\ Ct Predictions
Context Network N EY 5 "
1-layer Gated Recurrent Units (GRU) i \ \
Zt+41 Zt+42 Zt+3 Zt+4
Encoder Network
5-layer convolutional neural network (CNN fen Henc fene fenc Qsue Jene Jene Heme
Tt—3 Ti—2 Ti—1 Tty Tty2 Tt43 Ttya |

Important exps: Pho_ne/Sp_eaker Classification WWWN " mw ,,ww W‘W MMIMWW M"WW T —

*We will compare with this in our work.



Contrastive Predictive Losses Re lated Works

FB

wav2avec

CPC Bidir CPC DeepMind

DeepMind
Modified CPC | FB




Contrastive Predictive Losses Re latEd Works
4 FB I

wav2vec
CPC Bidir CPC DeepMind
DeepMind — Contribution:
\ Modified CPC | FB j self-supervised pre-training is shown to
improve supervised ASR
Used as input for ASR models, o
replace acoustic features \ : ._._.=._._::;:;:;I_).r_eq_‘.cf%(_)fl\s.
Context Network (5, @ @ @ A Y
9-layer convolutional neural network (CNN) \ % \ \
Zt+41 Zt+42 Zt+3 Zt+4
Encoder Network
5-layer convolutional neural network (CNN fen Henc fene fenc Qsue Jene Jene Heme
Tt—3 Ti—2 Ti—1 Tty Tty2 Tt43 Ttya |

Important exps: ASR on WS} / TIMIT WWWN " mw ,,,‘w W‘W Mw'n'mmw M"WW B e

*We will compare with this in our work.



Contrastive Predictive Losses Re lated Works

FB

wav2avec

CPC Bidir CPC DeepMind

DeepMind
Modified CPC | FB




Contrastive Predictive Losses

Related Works

-

FB \ Contribution:
wav2vec bidirectional context + ASR
CPC Bidir CPC DeepMind learning representations from large amount of
5 Ming unlabeled data (8000 hrs) can provide
eepiviin . improvements for out-of-domain transfer
\ Modified CPC | FB J (different datasets / cross-lingual).
I
anoitoibotd 33 con Cat Predictions

| <<< Backward

baS &4y [SEN [+3% S
/onoQ \ / ousQ\ /oan \ / onsQ\ /onsQ \ / 20190, S h are d
[ aa® | epa® | ep® | ® | % [ % | e® | g

| ——

Important exps: ASR on LibriSpeech
*We will compare with this in our work.

Forward >>> [

Zt+1 242 Zt+3 Zt+4

| Tt—3 | Tp—2 | Tyg—1 | Te | Tey1 | Ti42 | Te43 | Tia |

M =l oo < e

shared




Contrastive Predictive Losses Re lated Works

FB

wav2avec

CPC Bidir CPC DeepMind

DeepMind
Modified CPC | FB




Contrastive Predictive Losses

-

wav2vec

CPC

N\

DeepMind

Bidir CPC

Modified CPC

FB I
DeepMind
FB

J

Important exps: Phone Classification

Contributions:
1) changing the batch normalization to channel-wise normalization
2) replace the linear prediction layer to a Transformer layer

Related Works

3) and replacing the context network of GRUs with Long Short-Term Memory (LSTM) cells

*We will compare with this in our work.



Contrastive Predictive Losses

FB
wav2vec

CPC Bidir CPC DeepMind

DeepMind
Modified CPC | FB

Reconstruction Losses

MIT s Multi-Target APC | MIT
APC \
DeCoAR Amazon
Google Google Google

Autoencoder Audio2Vec Phase

Related Works



Important exps: Phone / Speaker Classification
*We compared with this in our previous work.

Intuition:

Speech Version of a RNN Language Model

Reconstruction Losses

MIT / Multi-Target APC | MIT
APC
\ DeCoAR Amazon
Google Google Google
Autoencoder Audio2Vec Phase

Related Works

Change the softmax layer to
regression layer for reconstruction

Input: | Word;

|

Instead of operating on word tokens,
change them to acoustic frames

WOrd2 WOI'd3



Related Works

Reconstruction Losses

MIT Multi-Target APC | MIT
APC <

DeCoAR Amazon

Google Google Google

Autoencoder Audio2Vec Phase




Important exps: Phone Classification, ASR on WSJ
They use settings that are not conventional.

Intuition:

The APC objective is extended to bidirectional.

An auxiliary RNN is used to refresh current
hidden states with the knowledge learned in
the past, allowing the model to remember

more from the past.

Related Works

______________________________

[Lf target x;_3 X¢_o

X¢ xt+1]

Xt-1

(Lpinput Xe-s Xe-3s  Xez  Xe1 Xe |

N

MIT Multi-Target APC | MIT
APC
DeCoAR Amazon
Google Google Google
Autoencoder Audio2Vec Phase

J

predicts the future frame
conditioning on previous context,

but also predicts the past
memory through reconstruction.



Related Works

Reconstruction Losses

MIT Multi-Target APC | MIT
APC <

DeCoAR Amazon

Google Google Google

Autoencoder Audio2Vec Phase




Important exps: ASR on WSJ / LibriSpeech
*We will compare with this in our work.

Intuition:

Deep Contextualized Acoustic Representations

Combining the bidirectionality of ELMo and the
reconstruction objective of APC. Reconstruction loss is

summed over all possible slices in the entire sequence.

APC

Related Works

Representation Learning with Unlabeled Data

Reconstruction

ELMO

EFNp FFN

~

MIT Multi-Target APC | MIT
APC <
DeCoAR Amazon
Google Google Google
Autoencoder Audio2Vec Phase

J

Encoder . i \

— forward LSTM ——mm8

\ — forward LSTM

L/

Filterbank
Feature




Related Works

Reconstruction Losses

MIT Multi-Target APC | MIT
APC <

DeCoAR Amazon

Google Google Google

Autoencoder Audio2Vec Phase




Important exps: Phone Classification

[HHHHXHHH% #>Hﬁ> S

Wavenet

- um

A

Reconstruction Losses

MIT

APC

Google

< Multi-Target APC | MIT
DeCoAR

Amaz

Google Google

Autoencoder

Audio2Vec Phase

Related Works

Important exps: Linear Classifications

m =

1

0
=>[0

:(>/ TTS \
Decoder

—7
o

Intuition:
Very similar to the VC structure, learn through
autoencoder bottleneck and reconstruction



Important exps: Linear Classifications

{encoder} fencoder}
& ﬁme’ Y = B Intuition:
Audio version of
Word2Vec
c) Temporal gap
Reconstruction Losses
MIT Multi-Target APC | MIT
APC
DeCoAR Amazon
Google Google Google
Autoencoder Audio2Vec Phase

Related Works

z.
| SO S |
| | I I
I I | |
encoder encoder encoder ‘encoder
> e Bt - -
2 - b sy
[}
g A r £ =
g S a...,‘ »E==
time
a) Audio2Vec - CBowW

\.decoder / \deooder \&ecoder decoden/
| [ |
=I=

{encoder}

frequency
Y

time

b) Audio2Vec - skip-gram




Contrastive Predictive Losses

FB
wav2vec

CPC Bidir CPC DeepMind

DeepMind
Modified CPC | FB

Reconstruction Losses

MIT Multi-Target APC | MIT
APC <

DeCoAR Amazon

Google Google Google

Autoencoder Audio2Vec Phase

Related Works



Contrastive Predictive Losses

CPC

DeepMind

wav2avec

Bidir CPC

Modified CPC

Reconstruction Losses

FB

DeepMind

FB

MIT Multi-Target APC | MIT
APC <
DeCoAR Amazon
Google Google Google
Autoencoder Audio2Vec Phase

Related Works

vQg-wav2vec vg-wav2vec-FT
FB FB
Alibaba
BERT-Style SLU BERT
Speech XLNet | Tencent
Amazon Didi Chuxing
Speech Encoder MPC

Ours

Mockingjay




Related Works

vQg-wav2vec vg-wav2vec-FT
FB FB
Alibaba
BERT-Style SLU BERT
Speech XLNet | Tencent
Amazon Didi Chuxing
Speech Encoder MPC

Ours

Mockingjay




= & N

(a) vg-wav2vec

:
:

CPC

wav2vec
architecture

vg-wav2vec BERT

1)

(b) Discretized speech training pipeline

AM t

o -

o0

—

Related Works

vQg-wav2vec

—

vg-wav2vec-FT

FB

FB




] «— cpC Related Works

vg-wav2vec [—*| vg-wav2vec-FT

FB FB

< &N N O

wav2vec

.
.
.
.
.
.
.
.
.
.
.
.
.
0
3
.

(a) vg-wav2vec

architecture

vg-wav2vec BERT AM ¢ <Ql 2
: i =
_i 0 0L
c
a

8 GFEL
.\ probabilities Gumbel
8- EHOE

2

logits

one-hot argmax
(b) Discretized speech training pipeline




Related Works

vQg-wav2vec vg-wav2vec-FT
FB FB
Alibaba
BERT-Style SLU BERT
Speech XLNet | Tencent
Amazon Didi Chuxing
Speech Encoder MPC

Ours

Mockingjay




Related Works

masked frames are filled with a default [ \
- R - -
posterior vectors with the probability of a vg-wav2vec vg-wav2vec-FT
placeholder phoneme “[PAD]"” equals to 1. FB FB
CTC loss training over :
ground-truth phonemes \ Alibaba j

AM Component \‘ =||= SLU Component =I
CTC/Alignment Phoneme
AphieeE] loss  Posterior  Iansformer BERT/XLNET Loss
Audio i =; - . | ; Diverges from
— —. . | R | previous works that
A — a B 28808 are fully
m - | g i self-supervised.

Pooling ~  Classification
Network Loss




Related Works

vg-wav2vec [~ vqg-wav2vec-FT
FB FB
\ Alibaba _/
BERT-Style SLU BERT
[Speech XLNet | Tencent \
The Trend: - .
All of these works emerges around October, 2019. Amazon Didi Chuxing
All submitted to ICASSP 2020 Speech Encoder MPC
(Speech XLNet and MPC did not make it) Ours
\ Mockingjay /




Related Works

(] M ] ] L1 Loss on / \
2 G " Al R R Plr:?g:ﬁteesd vg-wav2vec | vg-wav2vec-FT
+ A b A 1 FB FB
P Pl P P Prediction
H H |H H Head
S £ S 3 )
Mockingjay .
;| D D D D D [Representations k Alibaba /
+ 44 T 4 Translormer BERT-Style SLU BERT
MOCklngjay Encoders
A
] ' @ @ ' E E l @ . [ Masked [Speech XLNet | Tencent \
Frames
Amazon Didi Chuxing
Intuition: Speech Encoder MPC
A model that can predict the partial loss
of small segments of speech, Ours
should provide a contextualized Mockingjay
understanding of previous and later content. \ /




Contrastive Predictive Losses

CPC

DeepMind

wav2avec

Bidir CPC

Modified CPC

Reconstruction Losses

FB

DeepMind

FB

MIT Multi-Target APC | MIT
APC <
DeCoAR Amazon
Google Google Google
Autoencoder Audio2Vec Phase

Related Works

vQg-wav2vec vg-wav2vec-FT
FB FB
Alibaba
BERT-Style SLU BERT
Speech XLNet | Tencent
Amazon Didi Chuxing
Speech Encoder MPC

Ours

Mockingjay




Contrastive Predictive Losses

FB
wav2vec
CPC Bidir CPC DeepMind
DeepMind
Modified CPC | FB
Reconstruction Losses
MIT Multi-Target APC | MIT
APC <
DeCoAR Amazon
Google Google Google
Autoencoder Audio2Vec Phase

Related Works

vg-wav2vec*

vg-wav2vec-FT*

FB FB
*: quaqtized Qiscrete vectors of speech
Underlined: Fine-tuned Alibaba
BERT-Style SLU BERT*
Speech XLNet | Tencent
Amazon Didi Chuxing
Speech Encoder MPC
Ours Ours
Mockingjay TERA




Related Work Summary

The design of auxiliary task fundamentally defines what the model learns!

ey i | b || wavave || sidir coc |
D D D Prediction l l l
' > | Autoencoder || Phase |

Temporal Axis

Past Current Future

==

Temporal Axis




Channel Axis

- TERA

Transformer Encoder Representations from Alteration

Extending Mockingjay to multi-target learning on three dimensions

Temporal Axis



Recall: we mask mel spectrogram on time axis

140

120
« 100
Q

0 50 100 150 200 250 300
Frames




Multi-target Pre-training

Temporal Temporal

A) Original fMLLR feature D) Mask contiguous segments to zero along channel axis

B) Mask contiguous segments to zero along temporal axis E) Apply sampled Gaussian noise to magnitude

Channel

)
c
c
©
=
(&)

Channel

C) Replace contiguous segments with random segments F) Combining the alterations in B), D), and E)




L1 Reconstruction Loss = = = = = -

’

Predicted
Frames

HHHH Supervised Loss
DD D D DD‘D D\ Labels

i Downstream ifi
Trainable TERA -~ CliSSS::f{Ier,
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1
5
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A) Self-Supervised B) Supervised
Representation Learning Downstream Model
with Unlabeled Data Training with Labeled Data




Recall: Self-Supervised Learning for Speech

paired labeled data .
X (human speech) < » Yy (text transcript)

f \}
| .

W > I[ASR system }: | "Tell me the weather"
\ /4

x' (lots of human speech)

(——= == \}
::>| Pre-trained |l leverage the knowledge
| Model | of unlabeled data

= /
X (human speech) @ y (text transcript)
(—— — — \
W ', > :[ASR system}: “ﬁ > | "Tell me the weather™"
| /

B) Self-Supervised Learning for Improving Supervised Systems



Self-Supervised Learning: TERA

paired labeled data _
X (human speech) < » y (text transcript)

ASR
Phone / Speaker "Tell me the weather"
Classification

A) Supervised Learning

x' (lots of human speech)

leverage the knowledge
*H ‘“ ' h H N m :> [ HERs } of unlabeled data

X (human speech) @ y (text transcript)
ASR
Phone / Speaker "Tell me the weather"

~ Classification |

B) Self-Supervised Learning for Improving Supervised Systems



Progress: 10 pages, 90% Done

Submitting to the IEEE/ACM Journal of TASL around summer

TERA: Self-Supervised Speech Representation
Learning with Transformer Encoders

.

e

JEN———

P




Frame-wise phone classification on LibriSpeech

Trained with little paired data




Frame-wise phone classification on LibriSpeech

Trained with little paired data

Feature extraction

1) Linear Classifier

2) 1 Hidden Classifier

3) Linear Concat Classifier




Frame-wise phone classification on LibriSpeech

Pre-train | 100 hr
Representation | Linear | 1 Hidden
CPC [8] 64.6 125
TERA-base: time 64.3 76.8
TERA-base: time + mag 64.1 77.1
TERA-base: time + channel 65.2 77.4
TERA-base: time + channel + mag 65.1 77.3
MFCC 397 59.9
fMLLR 52.6 68.4




Frame-wise phone classification on LibriSpeech

Pre-train 100 hr

Representation Linear | 1 Hidden 0 c .
CPC [3] 646 25 utperformed €P
TERA-base: time 64.3 76.8
TERA-base: time + mag 64.1 77.1 Using more objectives also
TERA-base: time + channel 65.2 77.4 improves performance!
TERA-base: time + channel + mag 635.1 77.3
MFCC 39.7 59.9
fMLLR 526 68.4

Baseline feature was outperformed by TERA features.




Frame-wise phone classification on LibriSpeech

Pre-train 100 hr 460 hr 960 hr

Representation Linear | 1 Hidden Linear | 1 Hidden Linear | 1 Hidden
CPC [8] 64.6 125 -

TERA-base: time 64.3 76.8 64.4 77.0 67.0 79.1
TERA-base: time + mag 64.1 77.1 64.5 77.3 64.7 77.8
TERA-base: time + channel 65.2 77.4 66.0 78.1 65.9 189
TERA-base: time + channel + mag 65.1 77.3 66.3 78.3 66.4 /8.9
MFCC SS9 59.9 s 2 o :
MLLR 526 68.4 < traditional features with linear classifier

More pre-training data increases performance.

Having more alteration is like having more data.




Frame-wise phone classification on LibriSpeech

Pre-train 100 hr 460 hr 960 hr
Representation Linear | 1 Hidden Linear | 1 Hidden Linear | 1 Hidden
CPC [8] 64.6 125 .’ _ ‘ . ‘
TERA-base: time  64.3 76.8 ( 64.4 770 | 67.0 791
TERA-base: time + mag 64.1 77.1 64.5 77.3 64.7 77.8
TERA-base: time + channel 65.2 77.4 66.0 78.1 65.9 78.5
TERA-base: time + channel + mag [\ 65.1 773 )\ 66.3 783 JI_ 66.4 789
MECC 39.7 59.9 5 2 B H -
MLLR 596 63.4 <— traditional features with linear classifier

When real data is limited ( <= 460 hr): more alterations are helpful.

When real data is vast (960 hr): augmentation is not required, but comparable.




Speaker linear classification on LibriSpeech

————————

Trained with little paired data

1) Frame-wise

2) Average over time




Speaker linear classification on LibriSpeech

Pre-train 100 hr

Representation Frame | Average
CPC [8] 97.4 -
TERA-base: time 68.4 96.1
TERA-base: time + mag 70.8 96.1
TERA-base: time + channel 93.6 98.5
TERA-base: time + channel + mag 98.9 99.2
MFCC 17.6 10.8
fMLLR 0.4 2.6

Baseline feature fails to encode speaker information.




Speaker linear classification on LibriSpeech

Outperformed CPC

Using more objectives also
improves performance!

Pre-train 100 hr
Representation Frame | Average
CPC [8 97.4 <
TERA-base: time 68.4 96.1
TERA-base: time + mag 70.8 96.1
TERA-base: time + channel 93.6 98.5
TERA-base: time + channel + mag 98.9 99.2
MFCC 76 | 108 |>
fMLLR 0.4 2.6

Although we train on fMLLR, we
recover the speaker information
through the proposed objectives.




Speaker linear classification on LibriSpeech

Pre-train 100 hr 460 hr 960 hr
Representation Frame | Average Frame | Average Frame Average
CPC [8] 97.4 - -
TERA-base: time 68.4 96.1 86.9 97.3 99.3 99.7
TERA-base: time + mag 70.8 96.1 88.0 98.0 89.2 08.8
TERA-base: time + channel 93.6 08.5 994 99.5 99.5 99.8
TERA-base: time + channel + mag 98.9 99.2 99.0 99.5 99.4 99.8
MECC 17.6 10.8 : ps o -
MLLR 0.4 )6 < traditional features with linear classifier

Pre-training on more data also gives benefit!
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Mixtures of auxiliary objectives - ASR

Pre-train 100 hr ‘
Models WER | Rescore
liGRU + TERA-base: time ( 8.46 6.12
liGRU + TERA-base: time + mag 8.43 6.11
liGRU + TERA-base: time + channel 8.57 6.16
liGRU + TERA-base: time + channel + mag |\ 8.32 6.01

More augmentations are helpful




Effect of Amount of Pre-training Data - ASR 1/4

Pre-train 100 hr 460 hr 960 hr
Models WER | Rescore WER | Rescore WER | Rescore
liGRU + TERA-base: time 8.46 6.12 8.38 6.10 8.31 5.99
liGRU + TERA-base: time + mag 8.43 6.11 8.38 6.04 8.40 6.03
liGRU + TERA-base: time + channel 8.57 6.16 8.49 6.08 8.35 6.07
liGRU + TERA-base: time + channel + mag || 8.32 6.01 8.29 6.00 8.31 6.01

More pre-training data increases performance,
Consistent WER drop for the red rows




Effect of Amount of Pre-training Data - ASR 2/4

Pre-train 100 hr 460 hr 960 hr
Models WER | Rescore WER | Rescore WER | Rescore
liGRU + TERA-base: time 8.46 6.12 8.38 6.10 8.31 5.99
liGRU + TERA-base: time + mag 8.43 6.11 8.38 6.04 8.40 6.03
liGRU + TERA-base: time + channel 8.57 6.16 8.49 6.08 8.35 6.07
liGRU + TERA-base: time + channel + mag ||| 8.32 6.01 8.29 6.00 8.31 6.01

More pre-training data increases performance,
Consistent WER drop for the red rows

=960 hr

Using all three auxiliary objectives is potentially
increasing the amount of pre-training data.
100 hr =




Effect of Amount of Pre-training Data - ASR 3/4

Pre-train 100 hr 460 hr 960 hr
Models WER | Rescore WER | Rescore WER | Rescore
liGRU + TERA-base: time 8.46 6.12 Y 8.38 6.10 8.31 599
liGRU + TERA-base: time + mag 8.43 6.11 | 8.38 6.04 8.40 6.03
liGRU + TERA-base: time + channel 8.57 6.16 | 8.49 6.08 8.35 6.07
liGRU + TERA-base: time + channel + mag 8.32 6.01 A 8.29 6.00 8.31 6.01 )

More pre-training data increases performance,
Consistent WER drop for the red rows

Using all three auxiliary objectives is potentially
increasing the amount of pre-training data.
100 hr ==960 hr

100 hr block to 460 hr block gives performance
boost, saturates for 460 hr to 960 hr




Effect of Amount of Pre-training Data - ASR 4/4

Pre-train 100 hr 460 hr 960 hr
Models WER | Rescore WER | Rescore WER | Rescore
liGRU + TERA-base: time 8.46 6.12 8.38 6.10 " 8.31 599 °
liGRU + TERA-base: time + mag 8.43 6.11 8.38 6.04 8.40 6.03
liGRU + TERA-base: time + channel 8.57 6.16 8.49 | - 8.35 6.07
liGRU + TERA-base: time + channel + mag 8.32 6.01 .29 6.00 . 8.31 6.01

Using all three auxiliary objectives is potentially increasing the
amount of pre-training data




Ablation Study

Representation Preirain Contex Phone Classification Speaker Recognition Speech Recognition
) Linear | 1 Hidden Frame | Average WER | Rescore
MECC none 39.7 59.9 17.6 10.8 8.66 6.42
fMLLR none 52.6 68.4 0.4 2.6 8.63 6.25
TERA-base: random none 15.3 48 0.4 0.7 16.96 13.68
TERA-base: none unidirectional 57.0 66.2 1.3 12.7 9.67 7.17
TERA-base: mag unidirectional 59.7 69.5 2.3 28.8 9.32 6.93
TERA-base: channel unidirectional 65.0 76.6 96.7 99.0 9.41 6.91
TERA-base: channel + mag unidirectional 64.2 75.7 97.3 99.2 9.33 6.87
TERA-base: time bidirectional 64.3 76.8 68.4 96.1 8.46 6.12
TERA-base: time + mag bidirectional 64.1 771 70.8 96.1 8.43 6.11
TERA-base: time + channel bidirectional 65.2 774 93.6 98.5 8.57 6.16
TERA-base: time + channel + mag bidirectional 65.1 71.3 98.9 99.2 8.32 6.01
TERA-base: time + channel + mag (MFCC) bidirectional 61.5 74.2 95.5 98.8 10.84 8.06




Ablation Study - 1) Importance of Bidirectionality

Representation Preirain Contex Phone Classification Speaker Recognition Speech Recognition
) Linear | 1 Hidden Frame | Average WER | Rescore
MECC none 39.7 59.9 17.6 10.8 8.66 6.42
fMLLR none 52.6 68.4 0.4 2.6 8.63 6.25
TERA-base: random none 15.3 4.8 0.4 0.7 16.96 13.68
TERA-base: none unidirectional 57.0 66.2 1.3 12.7 9.67 7.17
TERA-base: mag unidirectional 59.7 69.5 23 28.8 032 6.93
TERA-base: channel unidirectional 65.0 76.6 96.7 99.0 9.41 6.91
TERA-base: channel + mag unidirectional 64.2 75.7 97.3 99.2 9.33 6.87
TERA-base ] time bidirectional 64.3 76.8 68.4 96.1 8.46 6.12
TERA-base:] time|+ mag bidirectional 64.1 771 70.8 96.1 8.43 6.11
TERA-base] time|+ channel bidirectional 65.2 774 93.6 98.5 8.57 6.16
TERA-base] time|+ channel + mag bidirectional 65.1 713 98.9 99.2 8.32 6.01
TERA-base: time + channel + mag (MFCC) bidirectional 61.5 74.2 95.5 98.8 10.84 8.06

The time objective leads the model to learn bidirectional context!




Ablation Study - 2) Learning Speaker Identity

Representation Preirain Contex Phone Classification Speaker Recognition Speech Recognition
) Linear | 1 Hidden Frame | Average WER | Rescore
MEFCC none 39.7 59.9 17.6 10.8 8.66 6.42
fMLLR none 52.6 68.4 0.4 2.6 8.63 6.25
TERA-base: random none 15.3 4.8 04 0.7 16.96 13.68
TERA-base: none unidirectional 57.0 66.2 1.3 12.7 9.67 7.17
TERA-base: mag unidirectional 59.7 69.5 2.3 28.8 9.32 6.93
TERA-base: |channel unidirectional 65.0 76.6 96.7 99.0 941 6.91
TERA-base: |channel + mag unidirectional 64.2 75.7 97.3 99.2 9.33 6.87
TERA-base: time bidirectional 64.3 76.8 68.4 96.1 8.46 6.12
TERA-base: time + mag bidirectional 64.1 77:1 70.8 96.1 8.43 6.11
TERA-base: [time + channel bidirectional 65.2 77.4 93.6 98.5 8.57 6.16
TERA-base: [time + channel + mag bidirectional 65.1 713 98.9 99.2 8.32 6.01
TERA-base: time + channel + mag (MFCC) bidirectional 61.5 74.2 95.5 98.8 10.84 8.06

The channel objective leads the model to learn speaker identity,
While it does not compromise ASR performance!




Ablation Study - 3) Using Different features

. ) Phone Classification Speaker Recognition Speech Recognition
g e Linear | 1 Hidden Flr)ame | Aerage V\I;ER | Re.;core
MFECC none 39.7 59.9 17.6 10.8 8.66 6.42
fMLLR none 52.6 68.4 0.4 2.6 8.63 6.25
TERA-base: random none 15.3 4.8 0.4 0.7 16.96 13.68
TERA-base: none unidirectional 57.0 66.2 1.3 12.7 9.67 7.17
TERA-base: mag unidirectional 59.7 69.5 23 28.8 9.32 6.93
TERA-base: channel unidirectional 65.0 76.6 96.7 99.0 941 6.91
TERA-base: channel + mag unidirectional 64.2 75.7 97.3 99.2 9.33 6.87
TERA-base: time bidirectional 64.3 76.8 68.4 96.1 8.46 6.12
TERA-base: time + mag bidirectional 64.1 771 70.8 96.1 8.43 6.11
TERA-base: time + channel bidirectional 65.2 77.4 93.6 98.5 8.57 6.16
TERA-base: time + channel + ma bidirectional 2 1

bidirectional

TERA-base: time + channel + mag (MFCC)

Using fMLLR outperformes MFCC on all measures!




Ablation Study - 4) Comparing with baselines

. ) Phone Classification Speaker Recognition Speech Recognition
g e Linear | I Hidden Flr)ame | Aerage V\I;ER Re.;core
MFCC none 39.7 59.9 17.6 10.8 8.66 6.42
fMLLR none 52.6 68.4 04 2.6 8.63 6.25
TERA-base: random none 15.3 4.8 0.4 0.7 16.96 13.68
TERA-base: none unidirectional 57.0 66.2 1.3 12.7 9.67 7.17
TERA-base: mag unidirectional 59.7 69.5 23 28.8 9.32 6.93
TERA-base: channel unidirectional 65.0 76.6 96.7 99.0 941 6.91
TERA-base: channel + mag unidirectional 64.2 75.7 97.3 99.2 9.33 6.87
TERA-base: time bidirectional 64.3 76.8 68.4 96.1 8.46 6.12
TERA-base: time + mag bidirectional 64.1 771 70.8 96.1 8.43 6.11
TERA-base: time + channel bidirectional 65.2 77.4 93.6 98.5 8.57 6.16
TERA-base: time + channel + mag bidirectional 65.1 713 98.9 99.2 8.32 6.01
TERA-base: time + channel + mag (MFCC) bidirectional 61.5 74.2 95.5 98.8 10.84 8.06

Pre-training leads to better performance!




Comparing different depth and size

Representation n Pre-train ' 100 hr . . 360 hr . 960 hr '

) #Param Linear | | Hidden Linear | Concat Linear | 1 Hidden
CPC [8] [2] 6 - 64.6 | 72.5 - 65.5 -
Modified CPC [2] 6 - - - 68.9 -
TERA-base 3 21.3M 65.1 773 66.4 68.3 : jﬂﬂ*
TERA-medium 6 42.6M 65.9 77.5 00.0 68.9 67.3 78.8
TERA-large 12 85.1M 8 Ti1:7 67.5 71.7 -T2 78.5
TERA-xlarge 24 170.1M @9 i 6/.1 71.2 67.3 78.3

A deeper model helps when data is limited!




Comparison of recent approaches on ASR

| Models || Pre-train | Labels | WER | Rescore |

Bidir-CPC [1] 960 hr 96 hr 14.96 941
Bidir-CPC [1] 8000 hr 96 hr 13.69 8.70
vq-wav2vec [10] 960 hr 960 hr 6.2 -

wav2vec-large [12] 960 hr 100 hr - 6.92
DeCoAR [12] 960 hr 100 hr - 6.10
liGRU + MFCC None 100 hr | 8.66 6.42
liGRU + fMLLR None 100 hr 8.63 6.25
1iIGRU + TERA-base 960 hr 100 hr 8.31 6.01
liGRU + TERA-medium 960 hr 100 hr 8.37 6.05
liGRU + TERA-large 960 hr 100 hr 8.35 6.01
liIGRU + TERA-xlarge 960 hr 100 hr | 8.47 6.03

The proposed approach outperformed all previous methods!




Conclusion

Self-supervised learning,
a brand new topic with lots of ideas that we can work on!
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