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Probabilistic Policy for Masking Frames

1) Select 15% of the frames for 
prediction (highlighted in green).

A B C D E ...1) A 0 C 0 E ...
2)

2) For all selected frames:

● mask to zero 80% of the time

● replace randomly 10% of the time

● leave untouch 10% of the time

A G C Y E ...

A B C D E ...

80%

10%

10%

Mask all 15%

Replace all 15%

Do nothing, frames remain the same
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Model Architecture

● H_dim = 768
● F_dim = 3072
● A_num = 12

● Train on LibriSpeech 360 hrs
● Pre-train steps = 500k
● Fine-tune steps = 50k (2-epochs)

● BASE (L=3)
● LARGE (L=12)

Mockingjay
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Incorporating with Downstream Tasks

WS : Learn weighted 

sum on all layers Layer1

Layer2

Layer3
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Similar to 
ELMo in NLP
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3) Fine-tune (FT2)

Fine-tune with little paired data

Pre-train

Initialize for FT
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Experiments
We report results on 3 different downstream tasks:

● Phoneme Classification (72 classes): 
Train: LibriSpeech 360 / Test: LibriSpeech test-clean

● Speaker Recognition (63 classes): 
Train: 90% of LibriSpeech 100 / Test: 10% of LibriSpeech 100

● Sentiment Classification on spoken content (2 classes): 
To demonstrate domain invariant transferability, we use another dataset: MOSEI [3]

Feed-forward Classifier

RNN Classifier 7

0 0 0 3 3 8 8

[3] Multimodal language analysis in the wild: CMU-MOSEI 
dataset and interpretable dynamic fusion graph

features

features

phone

class
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Experiments - 3/3

Acoustic Features Phoneme Classification Speaker Recognition Sentiment Classification

Mel Features 49.1 70.1 64.6

BASE 60.9 94.5 67.4

LARGE 64.3 96.3 70.1

LARGE-WS 69.9 96.4 71.1

BASE-FT2 84.3 98.1 68.5

APC [2] 74.1 85.9 66.0

[2] An Unsupervised Autoregressive Model for Speech Representation Learning



Low-Resource Experiments - 1/6

We demonstrate how pre-training on speech can improve supervised 
training in low resource scenarios, we train with reduced amount of labels.
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Low-Resource Experiments - 4/6

LARGE < LARGE-WS
with an avg 5.75% improvement



Low-Resource Experiments - 4/6

With 0.1% of labels, 
LARGE-WS (52.8%) outperformed Mel (49.1%) that uses all 100% hours of labeled data.
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Low-Resource Experiments - 5/6

With 0.1% of labels, 
BASE-FT2 (57.9%) outperformed Mel (49.1%) that uses all 100% hours of labeled data.



Low-Resource Experiments - 6/6

APC works well on full resource but fails to generalize for limited labeled data.



Conclusion
We conclude that unsupervised Mockingjay 

improves supervised training!



Links
This slide (with speaker notes) can be found here: 

https://bit.ly/icassp2020-mockingjay

Our code and implementation can be found here: 
https://github.com/andi611/Mockingjay-Speech-Representation

https://bit.ly/icassp2020-mockingjay
https://github.com/andi611/Mockingjay-Speech-Representation

