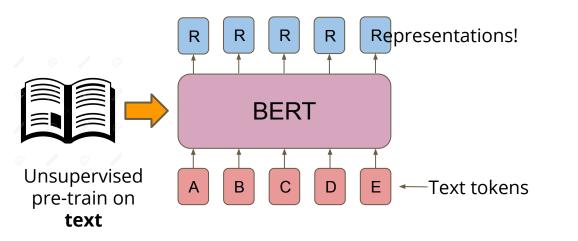


Mockingjay: Unsupervised Speech Representation Learning with Deep Bidirectional Transformer Encoders

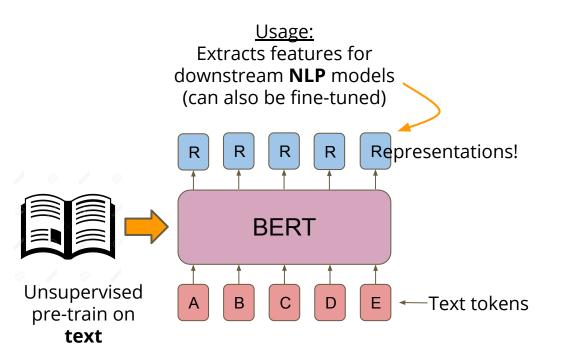
Andy T. Liu, Shu-wen Yang, Po-Han Chi, Po-chun Hsu, Hung-yi Lee

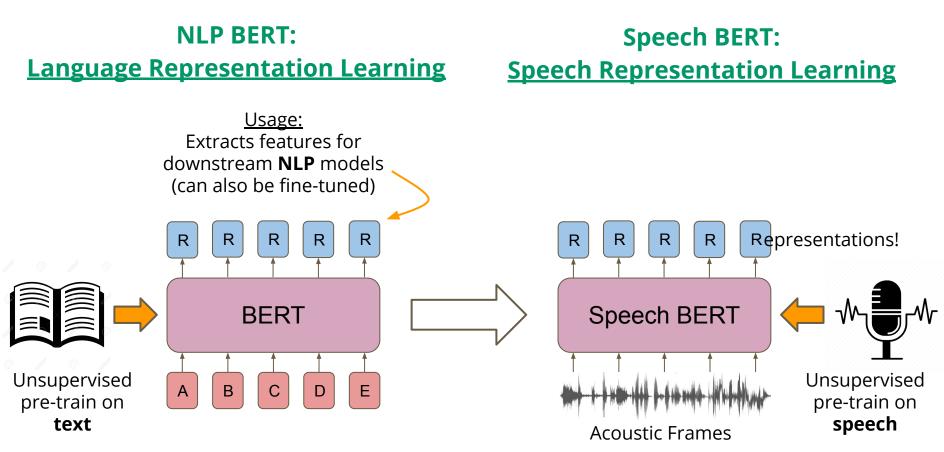
Speech Lab, National Taiwan University (NTU)

NLP BERT: Language Representation Learning



NLP BERT: Language Representation Learning





NLP BERT: Language Representation Learning

Usage: <u>Usage:</u> Extracts features for Extracts features for downstream **SLP** models downstream **NLP** models (can also be fine-tuned) (can also be fine-tuned) R R Representations! R R R R R R R Speech BERT BERT Unsupervised Unsupervised Е В pre-train on pre-train on text speech **Acoustic Frames**

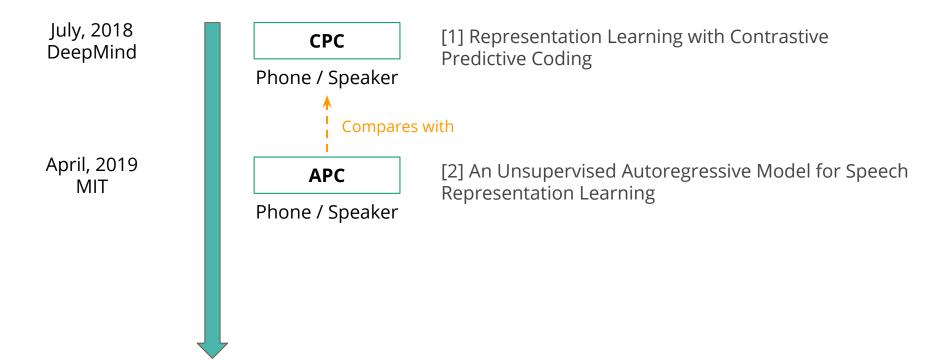
Speech BERT:

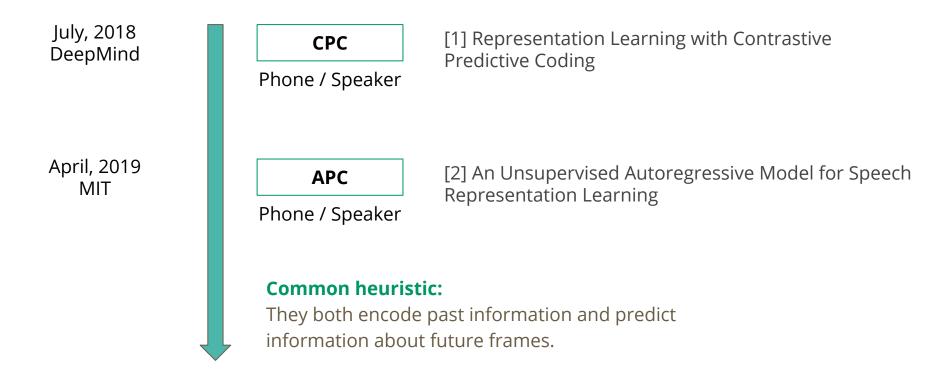
Speech Representation Learning

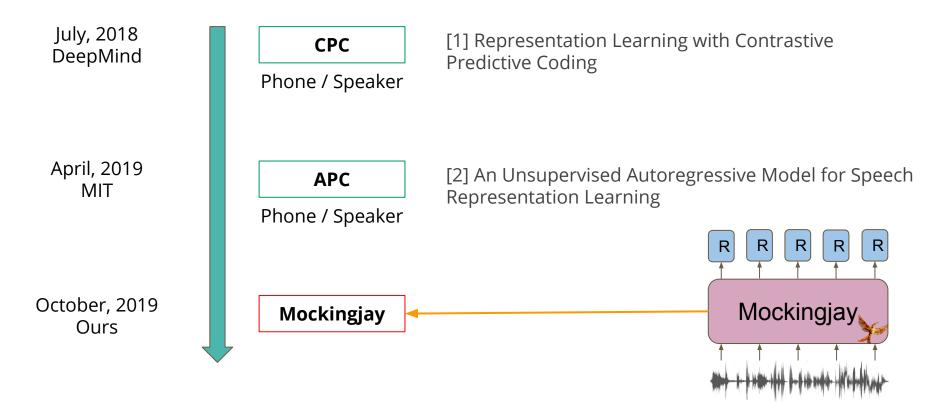
July, 2018 DeepMind

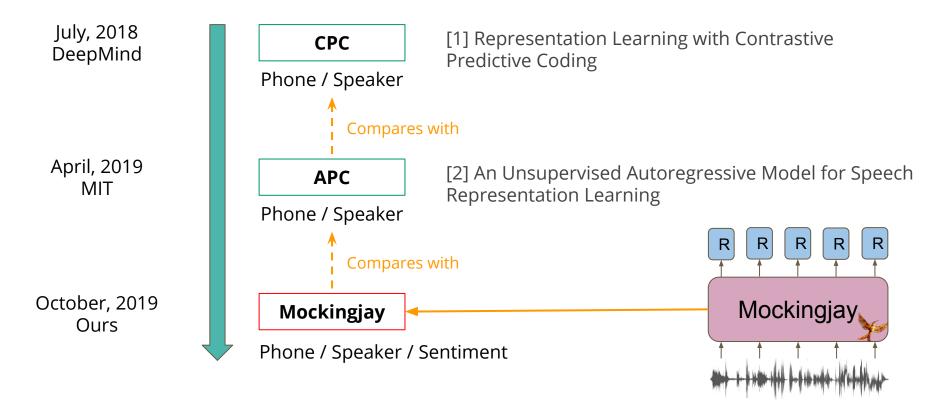
Phone / Speaker

[1] Representation Learning with Contrastive Predictive Coding





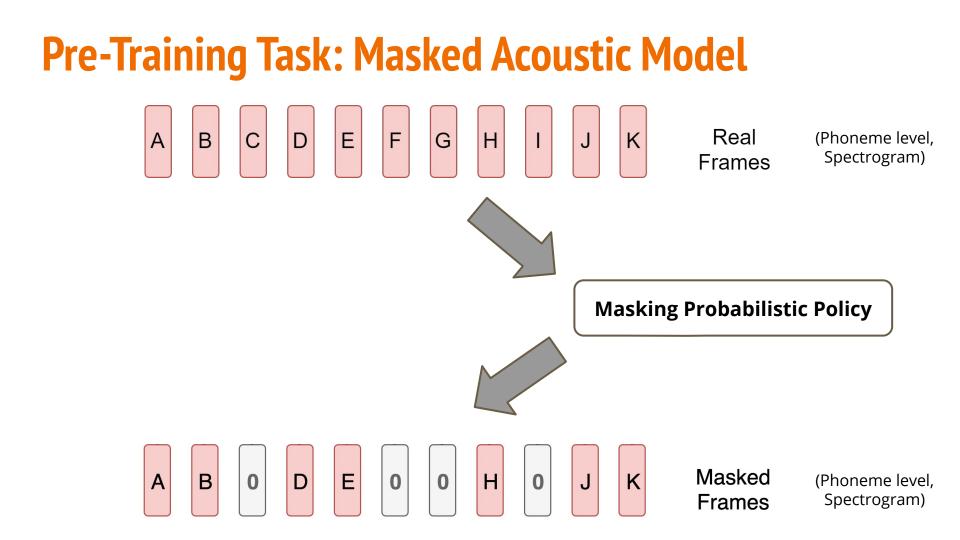




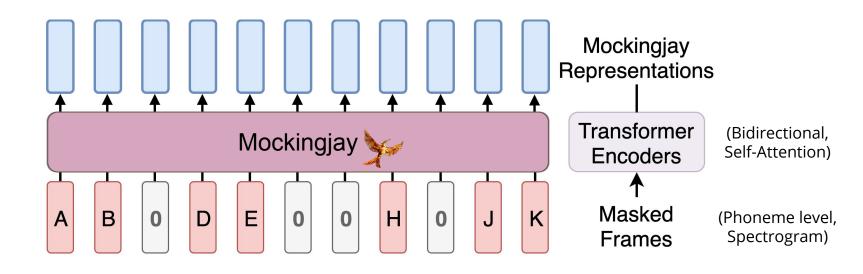
Pre-Training Task: Masked Acoustic Model



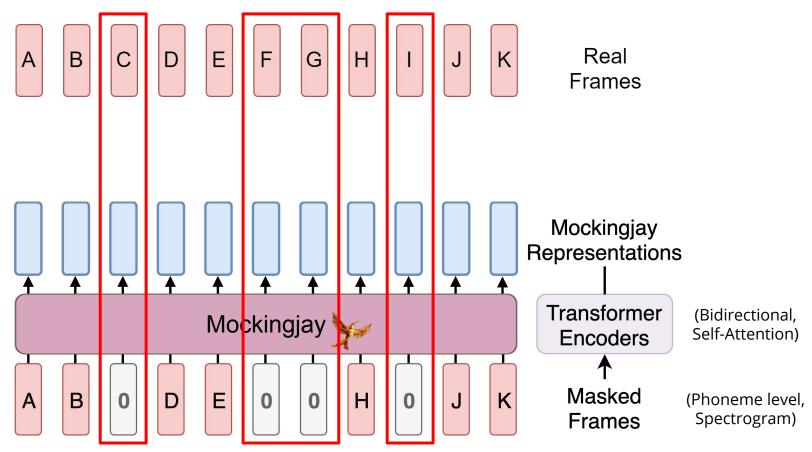
(Phoneme level, Spectrogram)



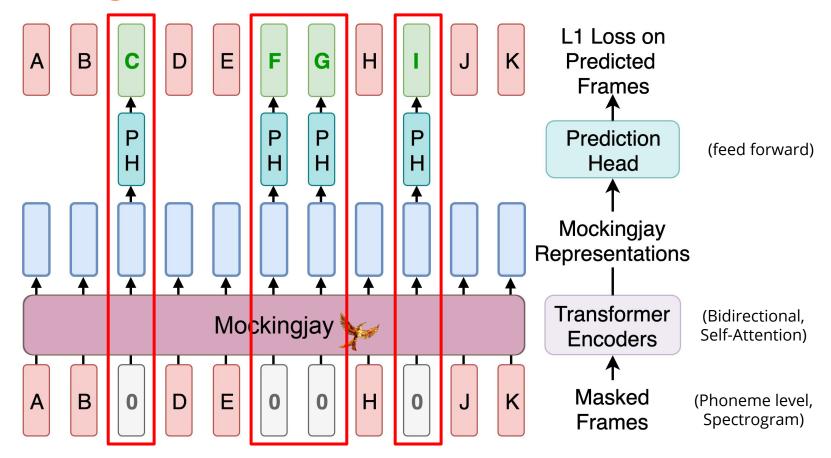
Pre-Training Task: Masked Acoustic Model A B C D E F G H I J K Real Frames



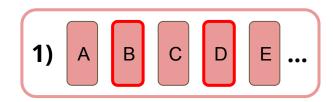
Pre-Training Task: Masked Acoustic Model



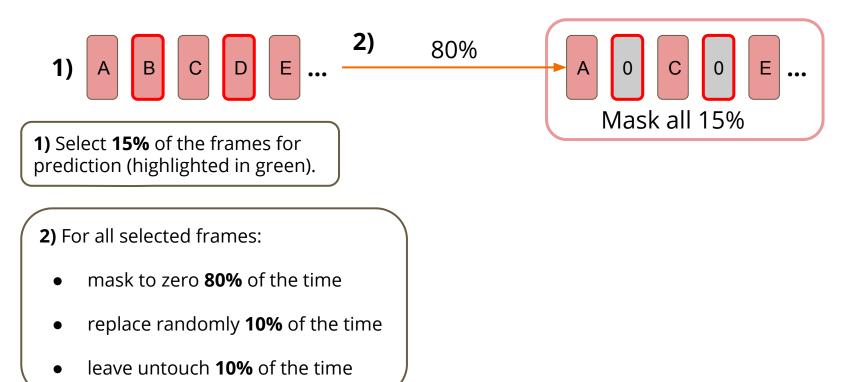
Pre-Training Task: Masked Acoustic Model

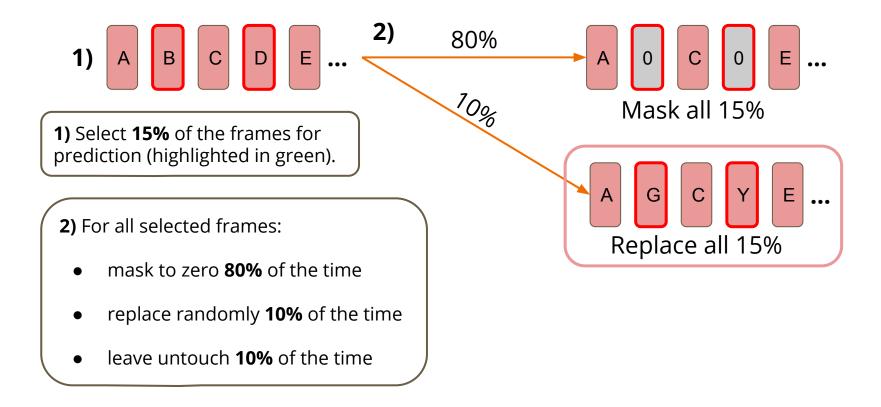


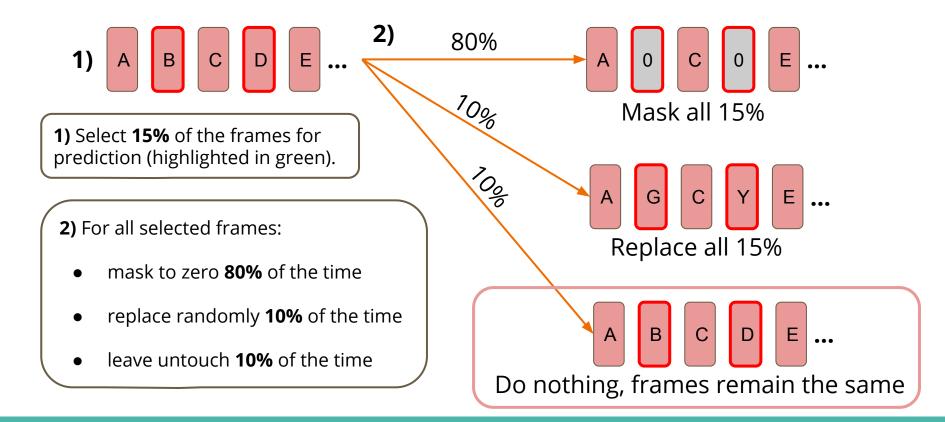
Pre-Training Task: Masked Acoustic Model L1 Loss on B С Ε F G Н Α K D J Predicted Frames Considers the Ρ Ρ Ρ Prediction Ρ (feed forward) whole utterance Н Н Η Head н Mockingjay Representations Transformer (Bidirectional, Mockingjay Self-Attention) Encoders Reconstructs Masked B Ε 0 Н K Α 0 D 0 0 J (Phoneme level, from corrupted Spectrogram) Frames input



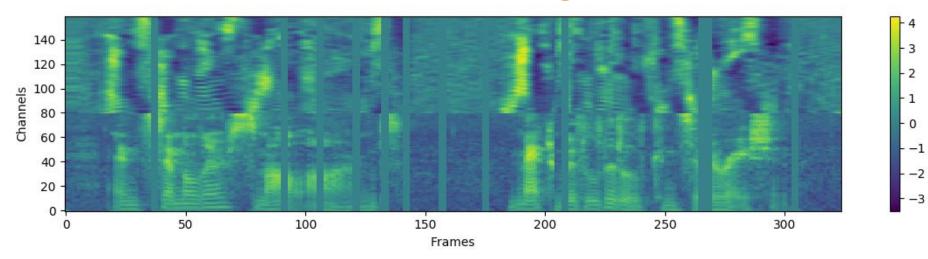
1) Select **15%** of the frames for prediction (highlighted in green).



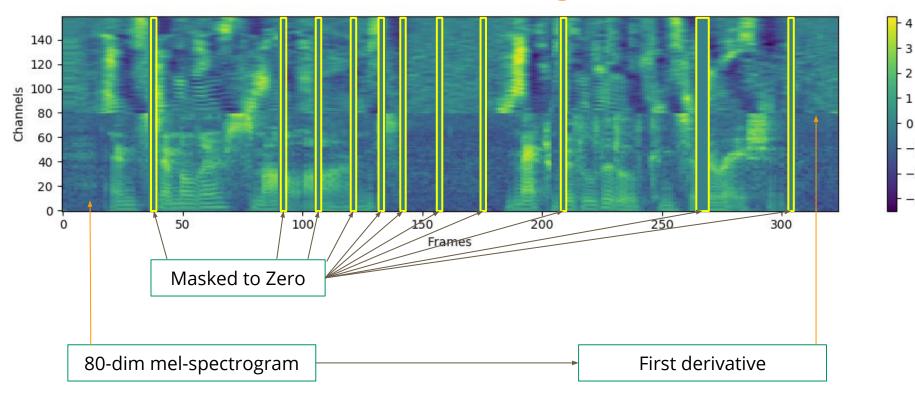


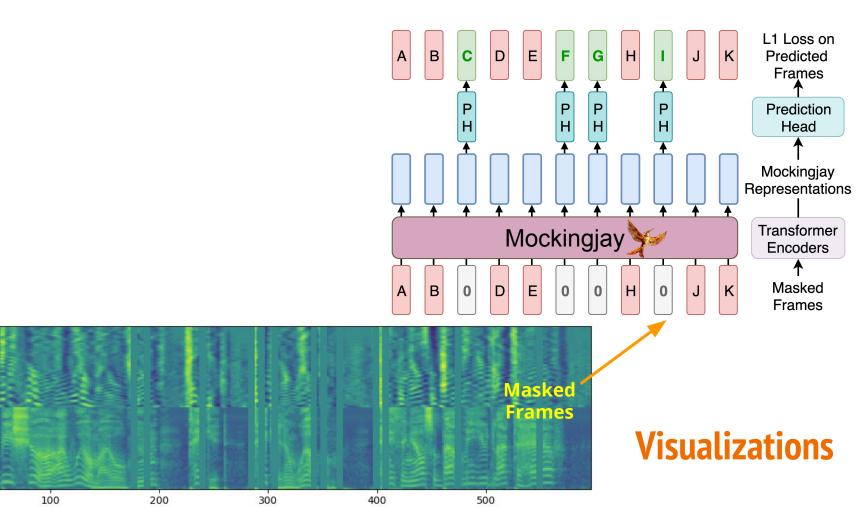


Input Feature: Masked Spectrogram



Input Feature: Masked Spectrogram



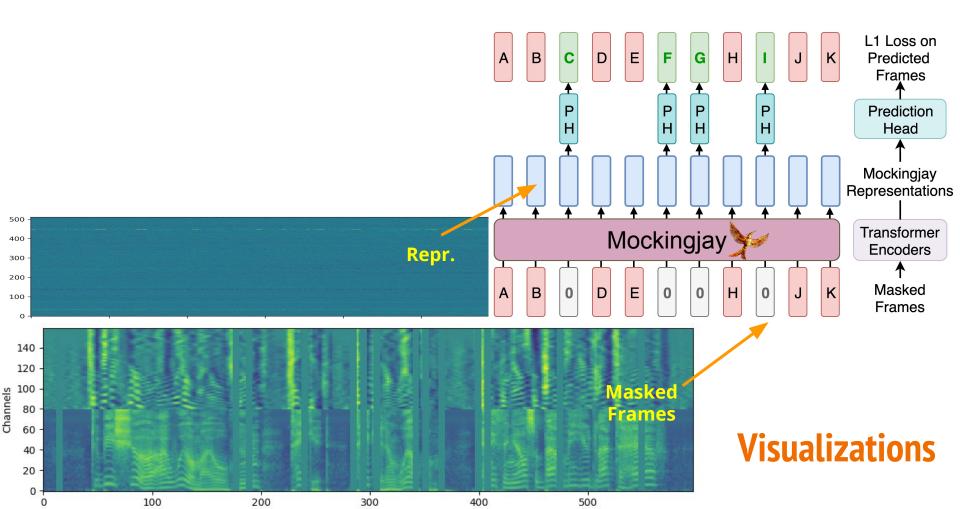


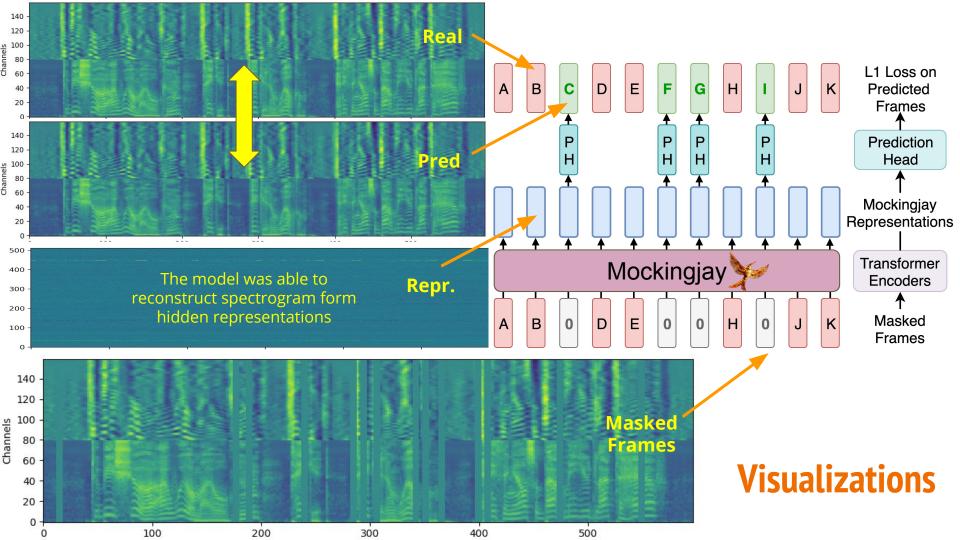
140 120

001 Channels 09 Channels

> 40 -20 -0 -

> > 0





Acoustic Features: long and locally smooth in nature,

need to <u>1) shorten the sequence</u> and <u>2) mask over a longer span</u>

Acoustic Features: long and locally smooth in nature,

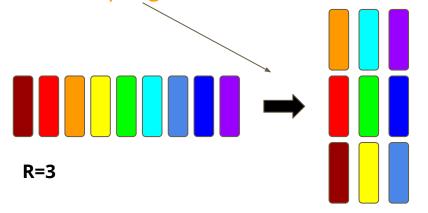
need to 1) shorten the sequence and 2) mask over a longer span

Address the long and smooth problem with: *Downsampling*, and *consecutive masking*

Acoustic Features: long and locally smooth in nature,

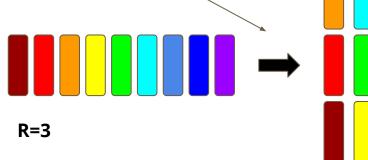
need to <u>1) shorten the sequence</u> and <u>2) mask over a longer span</u>

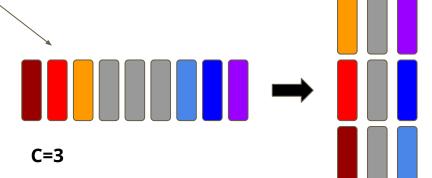
Address the long and smooth problem with: *Downsampling*, and *consecutive masking*



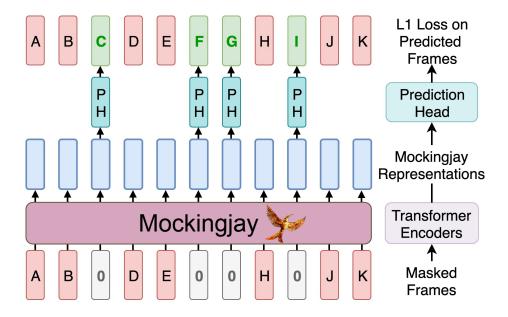
Acoustic Features: long and locally smooth in nature,

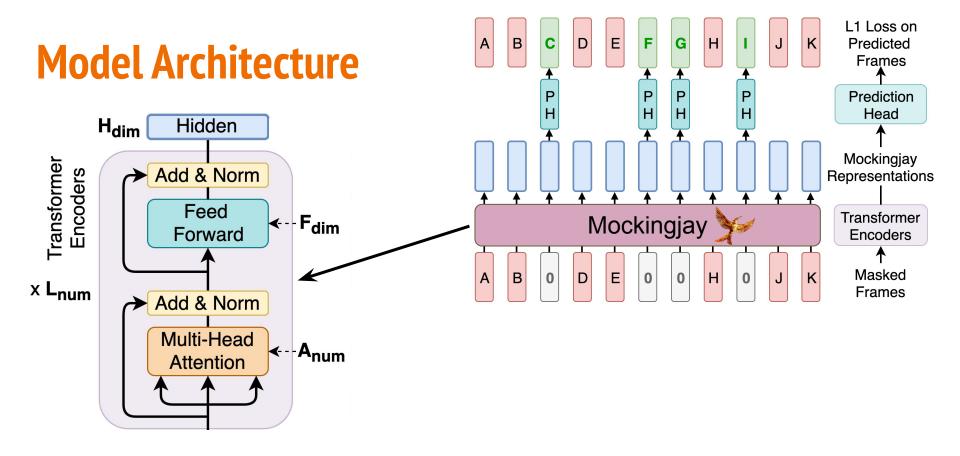
need to 1) shorten the sequence and 2) mask over a longer span

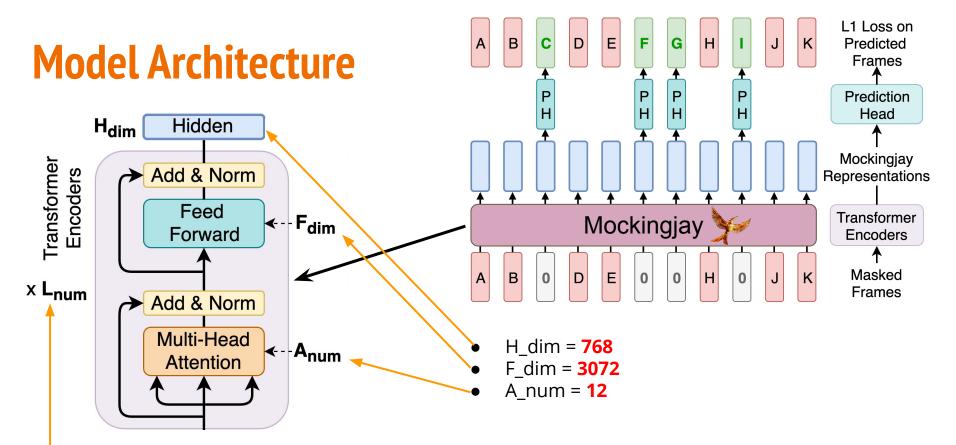




Model Architecture





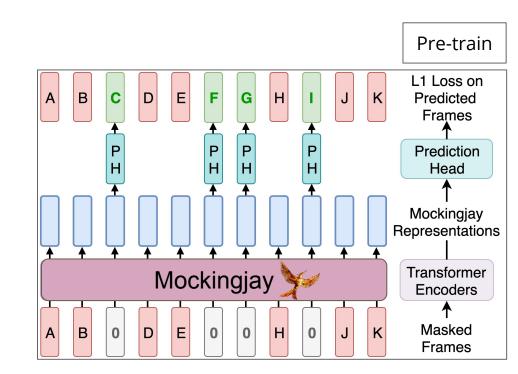


- Train on LibriSpeech **360 hrs**
- Pre-train steps = **500k**
- Fine-tune steps = **50k** (2-epochs)

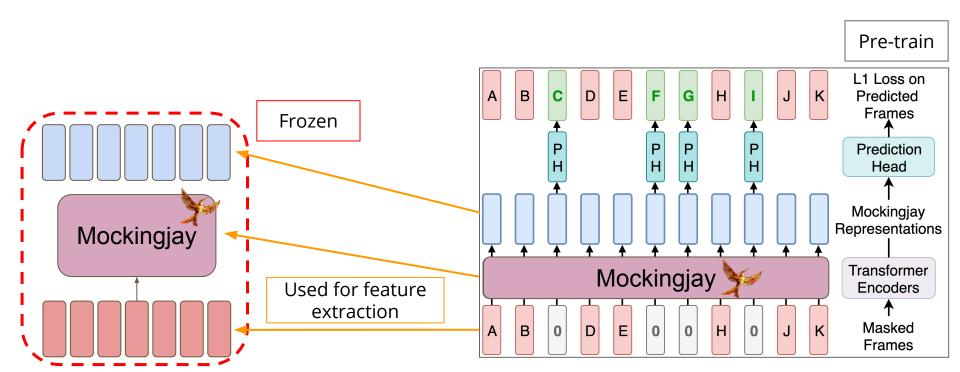
BASE (L=3)
 LARGE (L=12)

Incorporating with Downstream Tasks 1) Feature Extraction

Incorporating with Downstream Tasks 1) Feature Extraction

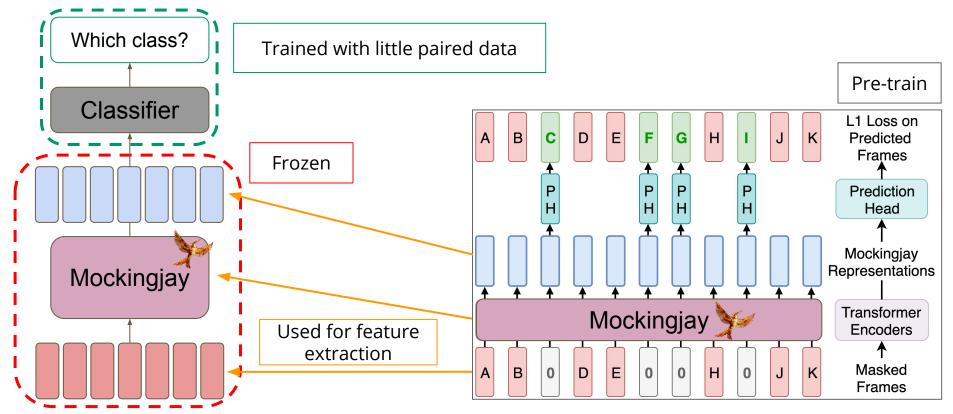


Incorporating with Downstream Tasks 1) Feature Extraction

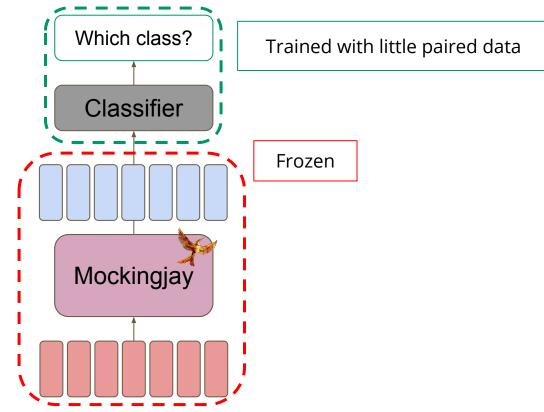


Incorporating with Downstream Tasks

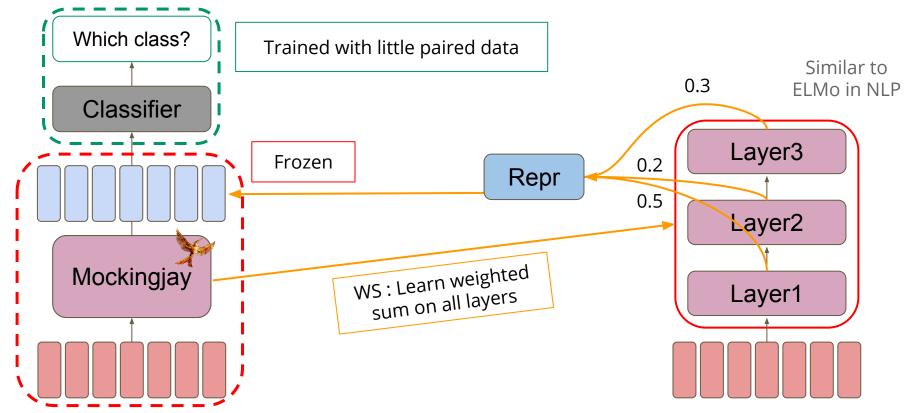
1) Feature Extraction



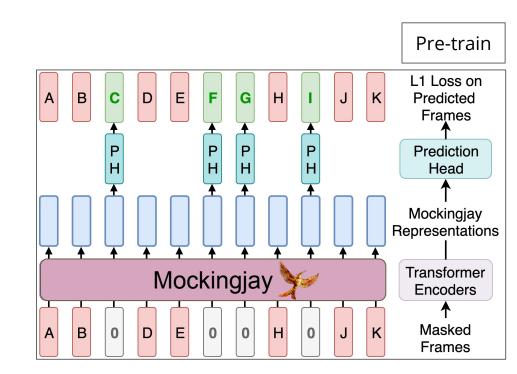
Incorporating with Downstream Tasks 2) Weighted Sum from All Layers (WS)



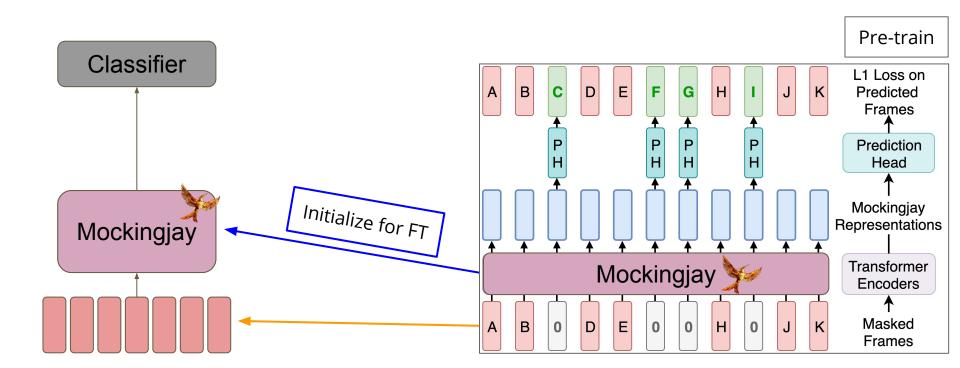
Incorporating with Downstream Tasks 2) Weighted Sum from All Layers (WS)



Incorporating with Downstream Tasks 3) Fine-tune (FT2)

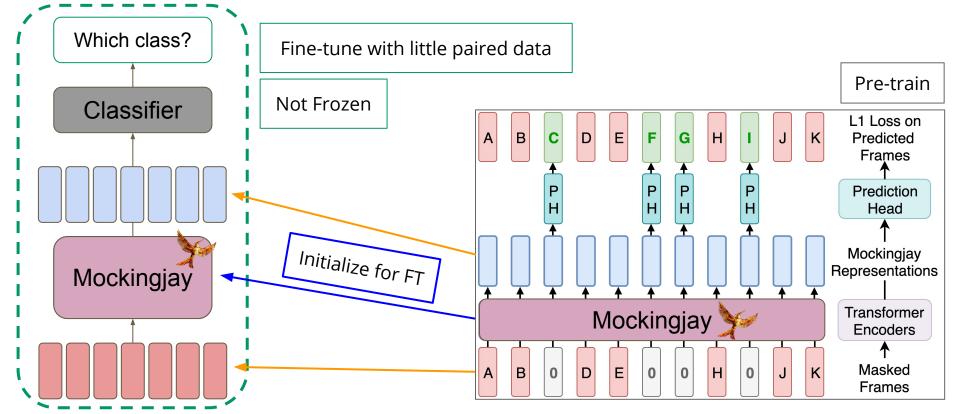


Incorporating with Downstream Tasks 3) Fine-tune (FT2)



Incorporating with Downstream Tasks

3) Fine-tune (FT2)



We report results on 3 different downstream tasks:

• Phoneme Classification

- Speaker Recognition
- Sentiment Classification on spoken content

We report results on 3 different downstream tasks:

• Phoneme Classification (72 classes):

Train: LibriSpeech 360 / Test: LibriSpeech test-clean

- Speaker Recognition
- Sentiment Classification on spoken content

[3] Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph

We report results on 3 different downstream tasks:

• Phoneme Classification (72 classes):

Train: LibriSpeech 360 / Test: LibriSpeech test-clean

- Speaker Recognition (63 classes): Train: 90% of LibriSpeech 100 / Test: 10% of LibriSpeech 100
- Sentiment Classification on spoken content (2 classes): To demonstrate domain invariant transferability, we use another dataset: MOSEI [3]

Experiments - 1/3

Acoustic Features	Phoneme Classification	Speaker Recognition	Sentiment Classification
Mel Features	49.1	70.1	64.6
BASE	60.9	94.5	67.4
LARGE	64.3	96.3	70.1

Consistent results over all three tasks: Mel < BASE < LARGE

Experiments - 2/3

Acoustic Features	Phoneme Classification	Speaker Recognition	Sentiment Classification
Mel Features	49.1	70.1	64.6
BASE	60.9	94.5	67.4
LARGE	64.3	96.3	70.1
LARGE-WS	69.9	96.4	71.1

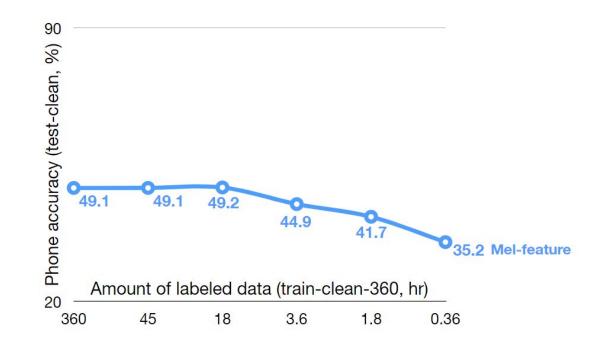
Consistent results over all three tasks: LARGE < LARGE-WS

Experiments - 3/3

Acoustic Features	Phoneme Classification	Speaker Recognition	Sentiment Classification
Mel Features	49.1	70.1	64.6
BASE	60.9	94.5	67.4
LARGE	64.3	96.3	70.1
LARGE-WS	69.9	96.4	71.1
BASE-FT2	84.3	98.1	68.5
APC [2]	74.1	85.9	66.0

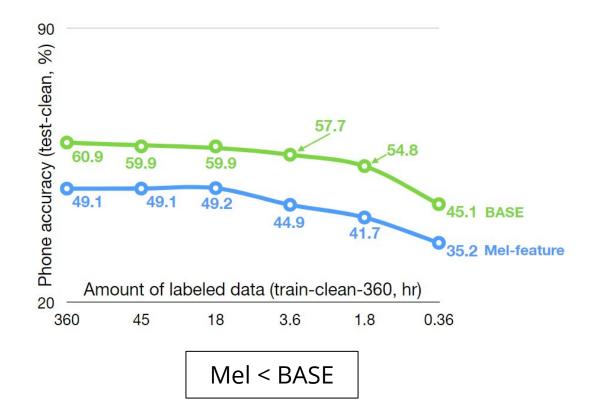
[2] An Unsupervised Autoregressive Model for Speech Representation Learning

Low-Resource Experiments - 1/6

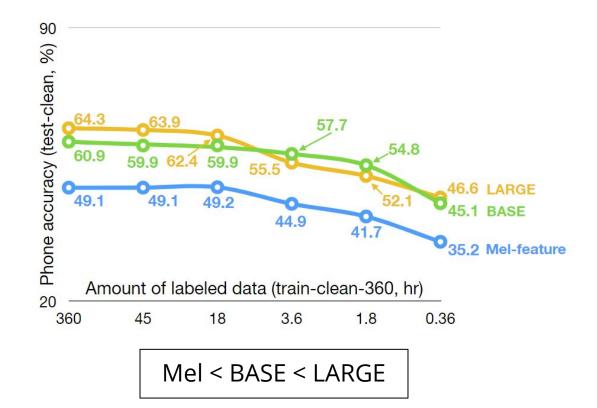


We demonstrate how pre-training on speech can improve supervised training in low resource scenarios, we train with reduced amount of labels.

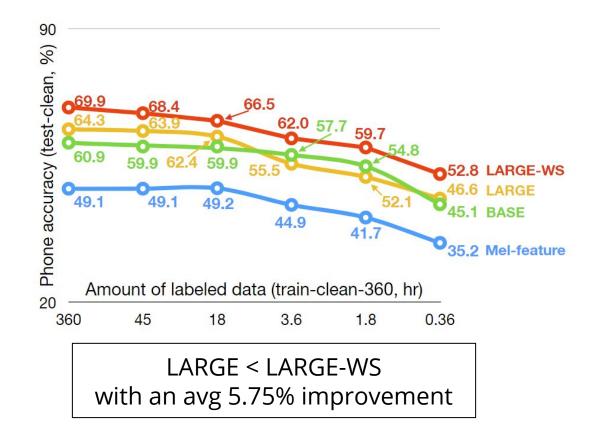
Low-Resource Experiments - 2/6



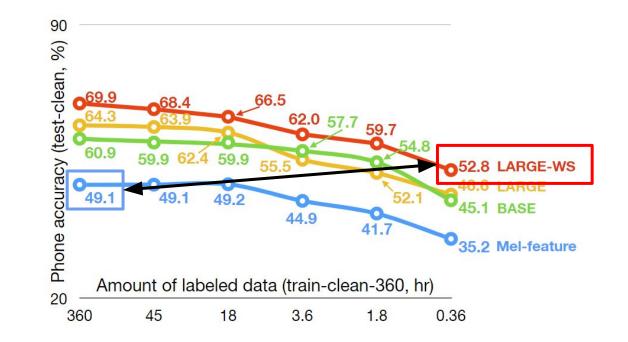
Low-Resource Experiments - 3/6



Low-Resource Experiments - 4/6



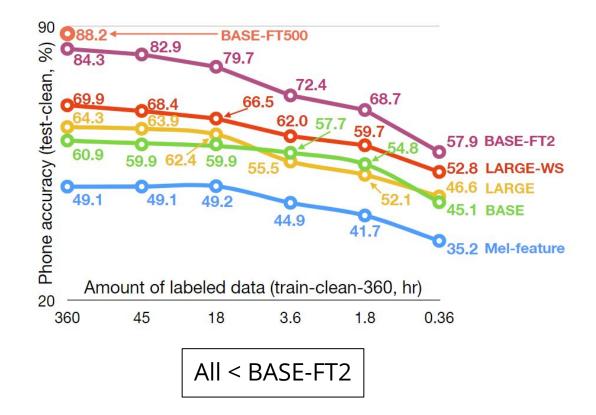
Low-Resource Experiments - 4/6



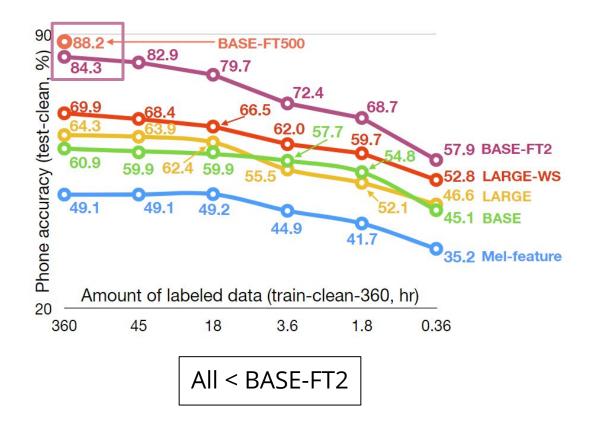
With 0.1% of labels,

LARGE-WS (52.8%) outperformed Mel (49.1%) that uses all 100% hours of labeled data.

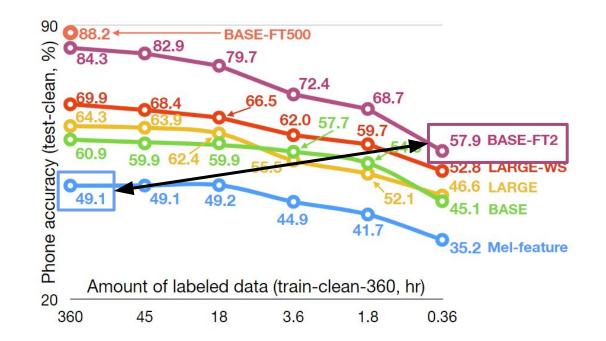
Low-Resource Experiments - 5/6



Low-Resource Experiments - 5/6



Low-Resource Experiments - 5/6



With 0.1% of labels, BASE-FT2 (57.9%) outperformed Mel (49.1%) that uses all 100% hours of labeled data.

Low-Resource Experiments - 6/6

APC works well on full resource but fails to generalize for limited labeled data.

Conclusion

We conclude that unsupervised Mockingjay improves supervised training!

This slide (with speaker notes) can be found here: <u>https://bit.ly/icassp2020-mockingjay</u>

Our code and implementation can be found here: <u>https://github.com/andi611/Mockingjay-Speech-Representation</u>