

Mockingjay: Unsupervised Speech Representation Learning with Deep Bidirectional Transformer Encoders

Andy T. Liu, Shu-wen Yang, Po-Han Chi, Po-chun Hsu, Hung-yi Lee

To appear in ICASSP 2020

2020/02/07

Introduction

NLP BERT: language representation learning:

BERT is a language representation model, it can be fine-tuned with downstream NLP models (QA model, summarization model, etc) to create SOTA results.

Inspired by the state-of-the-art BERT in NLP, we aim the build a speech version BERT.

Speech BERT: speech representation learning:

find a transform from speech that makes high-level information more accessible to SLP (Speech and Language Processing) downstream tasks.

(e.g. phone classification, ASR, VC, speech-translation)

- 3. Evaluation:
 - a. Phone classification
 - b. Speaker Discrimination
 - c. ASR (LibriSpeech & TIMIT)

The Proposed Framework

Pre-Training Task: Masked Acoustic Model

Select **15%** of the frames for prediction.

For all selected frames:

- mask to zero **80%** of the time
- replace randomly **10%** of the time
- leave untouch **10%** of the time

Input Feature: Masked Spectrogram

Input Feature: Masked Spectrogram

Differences from BERT

Acoustic Features: long and locally smooth in nature,

need to shorten the sequence and mask longer portions

Differences from BERT

Acoustic Features: long and locally smooth in nature,

need to shorten the sequence and mask longer portions

Address the long and smooth problem with: *Downsampling*, and *consecutive masking*

Model Architecture

Model Architecture

- H_dim = 768
- F_dim = 3072
- A_num = 12
- Pre-train steps = 500k
- Fine-tune steps = 50k (2-epochs)

Table 1. Th	ne proposed B	ASE and	LARGE mo	del
	Model	BASE	LARGE	
	Target	Mel	Linear	
	L_{num}	3	12	
	R_{factor}	1	3	
	C_{num}	7	3	
	parameters	21.4M	85.4M	

Model Architecture

- H_dim = 768
- F_dim = 3072
- A_num = 12
- Pre-train steps = **500k**
- Fine-tune steps = 50k (2-epochs)

Table 1. Th	ne proposed B	ASE and	LARGE mo	del
	Model	BASE	LARGE	
	Target	Mel	Linear	
	L_{num}	3	12	
	R_{factor}	1	3	
	C_{num}	7	3	
	parameters	21.4M	85.4M	

Incorporating with Downstream Tasks

Incorporating with Downstream Tasks

Incorporating with Downstream Tasks

We report results from 6 settings:

- Mel-Features
- APC representations
- BASE
- Large
- BASE-FT2
- Large-WS

On 2 different downstream tasks:

- Phoneme Classification
- Speaker Classification

- Phoneme Classification
- Speaker Classification

Acquetia Egaturas	Phoneme Classification		Speaker Classification
Acoustic realules	360 hr of labels (100%)	0.36 hr of labels (0.1%)	63 Speakers
Mel Features	49.1	35.2	70.1
APC representation	74.1	26.6	85.9
BASE	60.9	45.1	94.5
BASE-FT2	84.3	57.9	98.1
LARGE	64.3	46.6	96.3
LARGE-WS	69.9	52.8	96.4

Acquetia Egaturas	Phoneme Classification		Speaker Classification
Acoustic reatures	360 hr of labels (100%)	0.36 hr of labels (0.1%)	63 Speakers
Mel Features	49.1	35.2	70.1
APC representation	74.1	26.6	85.9
BASE	60.9	45.1	94.5
BASE-FT2	84.3	57.9	98.1
LARGE	64.3	46.6	96.3
LARGE-WS	69.9	52.8	96.4

Acquetia Egaturas	Phoneme Classification		Speaker Classification
Acoustic realules	360 hr of labels (100%)	0.36 hr of labels (0.1%)	63 Speakers
Mel Features	49.1	35.2	70.1
APC representation	74.1	26.6	85.9
BASE	60.9	45.1	94.5
BASE-FT2	84.3	57.9	98.1
LARGE	64.3	46.6	96.3
LARGE-WS	69.9	52.8	96.4

Acquetia Egaturas	Phoneme Classification		Speaker Classification
Acoustic realules	360 hr of labels (100%)	0.36 hr of labels (0.1%)	63 Speakers
Mel Features	49.1	35.2	70.1
APC representation	74.1	26.6	85.9
BASE	60.9	45.1	94.5
BASE-FT2	84.3	57.9	98.1
LARGE	64.3	46.6	96.3
LARGE-WS	69.9	52.8	96.4

Current work: Combining with ASR

DNN/HMM Hybrid ASR with Pytorch Kaldi

Kaldi

Model	Pre-train (hr)	WER (%)
Li-GRU + mfcc	None	8.38
Li-GRU + fMLLR	None	6.2
Bidir CPC [1]	Libri 960	9.41
Bidir CPC [1]	8000	8.70
vq-wav2vec gumbel + Transformer Big [2]	Libri 960	6.2
liGRU + Mockingjay (Ours)	Libri 100	6.32
liGRU + Mockingjay (Ours)	Libri 460	6.15
liGRU + Mockingjay (Ours)	Libri 960	6.14

[1] Unsupervised Pre-training of Bidirectional Speech Encoders via Masked Reconstruction https://openreview.net/pdf?id=HJe-bISYvH

Model	Pre-train (hr)	WER (%)
Li-GRU + mfcc	None	8.38
Li-GRU + fMLLR	None	6.2
Bidir CPC [1]	Libri 960	9.41
Bidir CPC [1]	8000	8.70
vq-wav2vec gumbel + Transformer Big [2]	Libri 960	6.2
liGRU + Mockingjay (Ours)	Libri 100	6.32
liGRU + Mockingjay (Ours)	Libri 460	6.15
liGRU + Mockingjay (Ours)	Libri 960	6.14

[1] Unsupervised Pre-training of Bidirectional Speech Encoders via Masked Reconstruction https://openreview.net/pdf?id=HJe-blSYvH

Model	Pre-train (hr)	WER (%)
Li-GRU + mfcc	None	8.38
Li-GRU + fMLLR	None	6.2
Bidir CPC [1]	Libri 960	9.41
Bidir CPC [1]	8000	8.70
vq-wav2vec gumbel + Transformer Big [2]	Libri 960	6.2
liGRU + Mockingjay (Ours)	Libri 100	6.32
liGRU + Mockingjay (Ours)	Libri 460	6.15
liGRU + Mockingjay (Ours)	Libri 960	6.14

[1] Unsupervised Pre-training of Bidirectional Speech Encoders via Masked Reconstruction https://openreview.net/pdf?id=HJe-blSYvH

Model	Pre-train (hr)	WER (%)
Li-GRU + mfcc	None	8.38
Li-GRU + fMLLR	None	6.2
Bidir CPC [1]	Libri 960	9.41
Bidir CPC [1]	8000	8.70
vq-wav2vec gumbel + Transformer Big [2]	Libri 960	6.2
liGRU + Mockingjay (Ours)	Libri 100	6.32
liGRU + Mockingjay (Ours)	Libri 460	6.15
liGRU + Mockingjay (Ours)	Libri 960	6.14

[1] Unsupervised Pre-training of Bidirectional Speech Encoders via Masked Reconstruction https://openreview.net/pdf?id=HJe-blSYvH

Preliminary ASR Results - TIMIT

Model	Pre-train (hr)	PER (%)
CNN + TD-filterbanks	None	18.0
Li-GRU + mfcc	None	16.7
Li-GRU + fMLLR	None	14.9
wav2vec	Libri 80	17.6
wav2vec	Libri 960	15.6
wav2vec	Libri 960 + WSJ 81	14.7
liGRU + Mockingjay (Ours)	Libri 460	14.4
liGRU + Mockingjay (Ours)	Libri 960	14.4

Preliminary ASR Results - TIMIT

Model	Pre-train (hr)	PER (%)
CNN + TD-filterbanks	None	18.0
Li-GRU + mfcc	None	16.7
Li-GRU + fMLLR	None	14.9
wav2vec	Libri 80	17.6
wav2vec	Libri 960	15.6
wav2vec	Libri 960 + WSJ 81	14.7
liGRU + Mockingjay (Ours)	Libri 460	14.4
liGRU + Mockingjay (Ours)	Libri 960	14.4

Preliminary ASR Results - TIMIT

Model	Pre-train (hr)	PER (%)
CNN + TD-filterbanks	None	18.0
Li-GRU + mfcc	None	16.7
Li-GRU + fMLLR	None	14.9
wav2vec	Libri 80	17.6
wav2vec	Libri 960	15.6
wav2vec	Libri 960 + WSJ 81	14.7
liGRU + Mockingjay (Ours)	Libri 460	14.4
liGRU + Mockingjay (Ours)	Libri 960	14.4

Attention Maps - What Each Layer Does?

11

Attention Maps - What Each Layer Does?

11

Attention Maps - Observing Phoneme Boundaries

Attention Maps - Observing Phoneme Boundaries

Q&A